Omar Alhussein, Phu Thinh Do, Junling Li, Qiang Ye, Weisen Shi, Weihua Zhuang, Xuemin (Sherman) Shen, Xu Li, and Jaya Rao

> University of Waterloo Huawei Technologies Canada

> > Dec 12th, 2018





### Table of Contents

#### Introduction

Motivation into 5G Networks Service Customized Virtual Networks System Model Research Problem Problem Description and Challenges Problem Formulation Heuristic Algorithm

Performance Evaluation

-Introduction

└─ Motivation into 5G Networks

### 5G Networks

- Explosive Increase in demand for capacity and data rates.
- Voice-centric networks to data-centric networks.
- New extreme and agile applications/scenarios.



5GPPP classification of 5G use cases [1]

[1] I. D. Silva, S. E. Ayoubi, O. Boldi, Ö. Bulakci, and P. Spapis, "5G RAN Architecture and Functional Design," tech. rep., 5th Generation Public Private Partnership, 2016.

-Introduction

-Service Customized Virtual Networks

### Service Customized Virtual Networks

- ► 5G vision cannot be realized by a *one-size-fits-all* singular network architecture.
- The current approach is to provide a virtually layered and software defined network architecture, using NFV and SDN.



Network virtualization [2]

 Service Customized Virtual Networks

### Orchestration of NFV-enabled Multicast Services

- We focus on the orchestration of multicast NFV-enabled network services.
- Multicast reduces the transmission resource consumption in backbone networks by over 50% compared to unicast.
- Multicast applications are trending, e.g., video streaming, multi-player augmented/virtual applications, and file distribution.



Introduction

Service Customized Virtual Networks

### Network Service | Definition

- Network service:
  - Traditional connectivity between terminals.
  - Network application (network policy).
- Example:
  - Distribute firewall-protected web-based traffic to destinations.



### Plan

### Introduction

Motivation into 5G Networks Service Customized Virtual Networks

#### System Model

#### **Research Problem**

Problem Description and Challenges Problem Formulation Heuristic Algorithm Performance Evaluation

### Network Substrate

Represented as  $\mathcal{G} = (\mathcal{N}, \mathcal{L})$ 

- ▶ The nodes can be switches and NFV nodes (set *M*).
- Each NFV node has available CPU resources, C(n).
- Each physical link has available transmission resource, B(I).
- ► Each physical node is capable of hosting specific subset of VNFs with indicator function U(n, i) = 1, if NFV node n can admit f<sub>i</sub>.



### Multicast VNF Chain

A multicast VNF chain is represented by acyclic directed graph,



- s and  $\mathcal{D}$  represent the source node and the set of destinations.
- V = {f<sub>1</sub>, f<sub>2</sub>, ..., f<sub>|V|</sub>} represents the set of functions that have to be traversed in an ascending order for every source-destination pair.
- $\overline{d}_r$  is the data rate requirement.
- ▶ Each VNF  $f_i$ ,  $i \in \{1, ..., |\mathcal{V}|\}$ , requires computing resources  $C(f_i)$ .

Joint VNF Placement and Multicast Traffic Routing in 5G Core Networks  $\Box$  Research Problem

### Plan

#### Introduction

Motivation into 5G Networks Service Customized Virtual Networks

#### System Model

#### Research Problem

Problem Description and Challenges Problem Formulation Heuristic Algorithm Performance Evaluation

-Research Problem

Problem Description and Challenges

### Joint routing and NF placement for multicast services

- ► Input:
  - Physical substrate  $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ ;
  - Multicast VNF chain  $S_r = (s, \mathcal{D}, f_1, f_2, \dots, f_{|\mathcal{V}|}, \overline{d}_r)$ .
- ► Output:
  - Embedded multicast topology on physical substrate.
- Description:
  - How to jointly embed a multicast service and route traffic between source and destinations through a chain of NFV nodes to minimize the network provisioning cost?



-Research Problem

Problem Description and Challenges

### **Research Issues**

#### Research Issue 1

Backward-compatible routing frameworks do not apply to this joint problem.

- If no NFs (routing only)  $\rightarrow$  reduces to Steiner tree construction.
- In practice, there exist a massive number of NF placement configurations; each of which requires a multicast routing tree construction.

-Research Problem

Problem Description and Challenges

### **Research Issues**

#### Research Issue 2

Multicast replication points should *not* be limited as a result of placement of NFs.

- Existing works perform NF placement first, followed by multicast routing.
- Results in limiting freedom of replication points.
- Conversely, building a multicast tree, followed by placement of NFs may not always be feasible.

-Research Problem

Problem Description and Challenges

### **Research Issues**

#### Research Issue 3

(1) The problem input, i.e., physical substrate can relatively be very large;(2) Developed solution should be relatively quick, in the scale of minutes.

- Depending on the service type and size, network services lives for minutes to several hours.
- There is a need for quick heuristic/approximation algorithms that provide consistent results.

Research Problem

-Problem Description and Challenges

### Solving Methodology

#### Problem Solving Methodology

Develop a *flexible* placement and routing framework with multipath traffic routing. That is, we allow for one-to-many and many-to-one VNF mappings, in addition to multipath routing.

- ▶ VNF chain provides traditional connectivity and network application.
  - 1 : n and n : 1 mapping  $\rightarrow$  flexibility for multicast replication points.
  - Enable Multipath routing.

Research Problem

Problem Description and Challenges

### Solving Methodology

#### Illustration of 1:n and n:1 mapping



-Research Problem

Problem Formulation

### Problem Formulation (1/2)

Assume that there exists up to J multicast trees to deliver one multicast service from the source to destinations.

$$\min \sum_{l \in \mathcal{L}} \sum_{j=1}^{J} \sum_{i=0}^{|\mathcal{V}|} \alpha \left( \frac{r_{li}^{j}}{B(l)} + x_{li}^{j} \right) + \beta \sum_{i=1}^{|\mathcal{V}|} \sum_{n \in \mathcal{M}} \frac{C(f_{i})}{C(n)} z_{ni}$$

 Routing (transmission) and placement (processing) cost

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ● ●

15 / 24

subject to

$$\begin{split} y_{lit}^{j} \leq & x_{li}^{j}, \ l \in \mathcal{L}, i \in \mathcal{S}_{0}^{|\mathcal{V}|}, j \in \mathcal{S}_{1}^{J}, t \in \mathcal{D} \\ & u_{nit} \leq & z_{ni}, n \in \mathcal{N}, i \in \mathcal{S}_{1}^{|\mathcal{V}|}, t \in \mathcal{D}. \\ & x_{li}^{j} \leq & \pi^{j}, \ y_{lit}^{j} \leq & \pi^{j}, d_{r}^{j} \leq & \pi^{j} \bar{d}_{r} \\ & \sum_{j=1}^{J} d_{r}^{j} = \bar{d}_{r} \end{split}$$

-Research Problem

Problem Formulation

### Problem Formulation (1/2)

Assume that there exists up to J multicast trees to deliver one multicast service from the source to destinations.

$$\min \sum_{l \in \mathcal{L}} \sum_{j=1}^{J} \sum_{i=0}^{|\mathcal{V}|} \alpha \left( \frac{r_{li}^{j}}{B(l)} + x_{li}^{j} \right) + \beta \sum_{i=1}^{|\mathcal{V}|} \sum_{n \in \mathcal{M}} \frac{C(f_{i})}{C(n)} z_{ni}$$

 Routing (transmission) and placement (processing) cost

subject to

$$\begin{split} y_{lit}^{j} \leq & x_{li}^{j}, \ l \in \mathcal{L}, i \in \mathcal{S}_{0}^{|\mathcal{V}|}, j \in \mathcal{S}_{1}^{J}, t \in \mathcal{D} \\ u_{nit} \leq & z_{ni}, n \in \mathcal{N}, i \in \mathcal{S}_{1}^{|\mathcal{V}|}, t \in \mathcal{D}. \\ & x_{li}^{j} \leq & \pi^{j}, \ y_{lit}^{j} \leq & \pi^{j}, d_{r}^{j} \leq & \pi^{j} \bar{d}_{r} \\ & \sum_{j=1}^{J} d_{r}^{j} = \bar{d}_{r} \end{split}$$

 Aggregate constraints, essential for relating x<sub>lit</sub>, u<sub>nit</sub> with x<sub>li</sub>, z<sub>ni</sub> and π<sup>j</sup>

-Research Problem

Problem Formulation

### Problem Formulation (1/2)

Assume that there exists up to J multicast trees to deliver one multicast service from the source to destinations.

$$\min \sum_{l \in \mathcal{L}} \sum_{j=1}^{J} \sum_{i=0}^{|\mathcal{V}|} \alpha \left( \frac{r_{li}^{j}}{B(l)} + x_{li}^{j} \right) + \beta \sum_{i=1}^{|\mathcal{V}|} \sum_{n \in \mathcal{M}} \frac{C(f_{i})}{C(n)} z_{ni}$$

 Routing (transmission) and placement (processing) cost

subject to

$$\begin{split} y_{lit}^{j} \leq & x_{li}^{j}, \ l \in \mathcal{L}, i \in \mathcal{S}_{0}^{|\mathcal{V}|}, j \in \mathcal{S}_{1}^{J}, t \in \mathcal{D} \\ u_{nit} \leq & z_{ni}, n \in \mathcal{N}, i \in \mathcal{S}_{1}^{|\mathcal{V}|}, t \in \mathcal{D}. \\ & x_{li}^{j} \leq & \pi^{j}, \ y_{lit}^{j} \leq & \pi^{j}, d_{r}^{j} \leq & \pi^{j} \bar{d}_{r} \\ & \sum_{j=1}^{J} d_{r}^{j} = \bar{d}_{r} \end{split}$$

- Aggregate constraints, essential for relating x<sub>lit</sub>, u<sub>nit</sub> with x<sub>li</sub>, z<sub>ni</sub> and π<sup>j</sup>
- Data rate split among J trees for one service request

Research Problem

Problem Formulation

### Problem 1 Formulation (2/2)

$$\sum_{(n,m)\in\mathcal{L}}y_{(n,m)it}^{j}-\sum_{(m,n)\in\mathcal{L}}y_{(m,n)it}^{j}=\pi^{j}\left(u_{n(i+1)t}-u_{nit}\right)$$

 Flow routing and placement constraints

$$\sum_{n\in\mathcal{M}}u_{nit}=1,\ t\in\mathcal{D},\ i\in\mathcal{S}_1^{|V|}$$

$$\sum_{j=1}^{J}\sum_{i=0}^{|\mathcal{V}|} r_{li}^{j} \leq B(l), l \in \mathcal{L}.$$

$$\sum_{i=1}^{|\mathcal{V}|} z_{ni} C(f_i) \leq C(n), \forall n \in \mathcal{M}$$

$$z_{ni}U(n,i) = 1, \, \forall n \in \mathcal{M}, i \in \mathcal{S}_1^{|\mathcal{V}|}$$

Research Problem

Problem Formulation

$$\sum_{(n,m)\in\mathcal{L}}y_{(n,m)it}^{j}-\sum_{(m,n)\in\mathcal{L}}y_{(m,n)it}^{j}=\pi^{j}\left(u_{n(i+1)t}-u_{nit}\right)$$

$$\sum_{n\in\mathcal{M}}u_{nit}=1,\ t\in\mathcal{D},\ i\in\mathcal{S}_1^{|V|}$$

- Flow routing and placement constraints
- For each s t pair, one instance of f<sub>i</sub> is implemented

$$\sum_{j=1}^{J}\sum_{i=0}^{|\mathcal{V}|}r_{li}^{j}\leq B(l),l\in\mathcal{L}.$$

$$\sum_{i=1}^{|\mathcal{V}|} z_{ni} C(f_i) \leq C(n), \forall n \in \mathcal{M}$$

$$z_{ni}U(n,i) = 1, \, \forall n \in \mathcal{M}, i \in \mathcal{S}_1^{|\mathcal{V}|}$$

Research Problem

Problem Formulation

$$\sum_{(n,m)\in\mathcal{L}}y_{(n,m)it}^{j}-\sum_{(m,n)\in\mathcal{L}}y_{(m,n)it}^{j}=\pi^{j}\left(u_{n(i+1)t}-u_{nit}\right)$$

$$\sum_{n\in\mathcal{M}}u_{nit}=1,\ t\in\mathcal{D},\ i\in\mathcal{S}_1^{|V|}$$

$$\sum_{j=1}^{J}\sum_{i=0}^{|\mathcal{V}|}r_{li}^{j}\leq B(l),l\in\mathcal{L}.$$

$$\sum_{i=1}^{|\mathcal{V}|} z_{ni} C(f_i) \leq C(n), \forall n \in \mathcal{M}$$

$$z_{ni}U(n,i) = 1, \, \forall n \in \mathcal{M}, i \in \mathcal{S}_1^{|\mathcal{V}|}$$

- Flow routing and placement constraints
- For each s t pair, one instance of f<sub>i</sub> is implemented
- Transmission resource constraint

Research Problem

Problem Formulation

$$\sum_{(n,m)\in\mathcal{L}}y_{(n,m)it}^{j}-\sum_{(m,n)\in\mathcal{L}}y_{(m,n)it}^{j}=\pi^{j}\left(u_{n(i+1)t}-u_{nit}\right)$$

$$\sum_{n\in\mathcal{M}}u_{nit}=1,\ t\in\mathcal{D},\ i\in\mathcal{S}_1^{|V|}$$

$$\sum_{j=1}^{J}\sum_{i=0}^{|\mathcal{V}|}r_{li}^{j}\leq B(l),l\in\mathcal{L}.$$

$$\sum_{i=1}^{|\mathcal{V}|} z_{ni} C(f_i) \leq C(n), \forall n \in \mathcal{M}$$

$$z_{ni}U(n,i) = 1, \, \forall n \in \mathcal{M}, i \in \mathcal{S}_1^{|\mathcal{V}|}$$

- Flow routing and placement constraints
- For each s t pair, one instance of f<sub>i</sub> is implemented
- Transmission resource constraint
- Processing resource constraint

-Research Problem

Problem Formulation

$$\sum_{(n,m)\in\mathcal{L}}y_{(n,m)it}^{j}-\sum_{(m,n)\in\mathcal{L}}y_{(m,n)it}^{j}=\pi^{j}\left(u_{n(i+1)t}-u_{nit}\right)$$

$$\sum_{n\in\mathcal{M}}u_{nit}=1,\ t\in\mathcal{D},\ i\in\mathcal{S}_1^{|V|}$$

$$\sum_{j=1}^{J}\sum_{i=0}^{|\mathcal{V}|}r_{li}^{j}\leq B(l),l\in\mathcal{L}.$$

$$\sum_{i=1}^{|\mathcal{V}|} z_{ni} C(f_i) \leq C(n), \forall n \in \mathcal{M}$$

$$z_{ni}U(n,i)=1,\,orall n\in\mathcal{M},i\in\mathcal{S}_1^{|\mathcal{V}|}$$

- Flow routing and placement constraints
- ► For each s − t pair, one instance of f<sub>i</sub> is implemented
- Transmission resource constraint
- Processing resource constraint
- Restriction on type of functions, admittable for each NFV node

-Research Problem

Heuristic Algorithm

### Heuristic Algorithm (single-path)

Step 1: Pick an initial key-preferred NFV node



Step 3: Construct MST for  $\{s, D, keynode\}$ 



Step 2: Re-weigh links to favor paths with NFV nodes



- Step4: Greedily place NFs from  $s \rightarrow t$
- Step 5: Repeat steps 1 to 4 by varying key NFV node to maximize number of initialized NFs and minimize the overall provisioning cost.

-Research Problem

Heuristic Algorithm

### Heuristic Algorithm (multipath)

- Extension to multipath routing
- 1. Rank all candidate paths for each  $(f_i f_{i+1})$  virtual segument in a descending order based on the amount of residual transmission resources.
- 2. Sequentially choose the paths from, such that the summation of all chosen paths' residual transmission meets the required data rate.



-Research Problem

Performance Evaluation

### Performance Evaluation (1/4)

- Simulated physical substrate
  - ▶  $|\mathcal{N}| = 100, |\mathcal{L}| = 684$
  - 25% selected NFV nodes
  - ▶ processing and transmission ~ U(50, 200)
- Varying multicast requests



Simulated mesh topology [3]

Research Problem

Performance Evaluation

### Performance Evaluation (2/4)

#### Numerical results



Comparison between ILP and heuristic algorithm solutions for mesh topology

-Research Problem

Performance Evaluation

### Performance Evaluation (3/4)

- Large Physical Substrate
  - KDL
  - *|N|* = 726, *|L|* = 1636
  - 25% selected NFV nodes
  - processing and transmission  $\sim$  $\mathcal{U}(60, 150), \mathcal{U}(100, 300)$
- Multicast request (SFC)
  - $\blacktriangleright |\mathcal{V}| = 10, \overline{d} = 10$
  - $\theta = [\frac{1}{2}, 11, ..., 2]$
  - source: Hancock
  - ▶  $|\mathcal{D}| = 7$



KDL topology (physical substrate)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ● ●

-Research Problem

Performance Evaluation

### Performance Evaluation (4/4)

- Run-time:
  - ► ILP: 363.43 sec (Python) with ~ U(100, 300)
  - ► ILP: 67.10 sec (Python) with ~ U(60, 150)
  - Heuristic:  $\sim 60 \text{ sec } (C++)$  for both
- The run-time of heuristic is more consistent.



-Research Problem

Performance Evaluation

### References

- [1] I. D. Silva, S. E. Ayoubi, O. Boldi, Ö. Bulakci, and P. Spapis, "5G RAN Architecture and Functional Design," tech. rep., 5th Generation Public Private Partnership, 2016.
- [2] N. Zhang, P. Yang, S. Zhang, D. Chen, W. Zhuang, B. Liang, and X. S. Shen, "Software Defined Networking Enabled Wireless Network Virtualization: Challenges and Solutions," IEEE Netw., vol. 31, no. 5, pp. 42–49, 2017.

Research Problem

Performance Evaluation

#### Thank You

#### Thank you to the Reviewers

Happy new year!

#### Backup slides

### Software Defined Networking

- Coined by Kate Greene; used to describe the OpenFlow platform.
- SDN is a new conceptual architecture.
  - Decoubles the control plane from the data plane.
  - Provides programmability to the control plane.



### Network Function Virtualization

## Proprietary physical devices (middlewares) are virtualized into virtual network functions (NFs).



