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Introductory Background | Fading Channels

This thesis is concerned with providing a unified approach to
modeling or approximating wireless fading channels.

Large-scale (Shadowing) Effect
Lognormal, Inverse-Gaussian,
Gamma.

Small-scale (Multipath) Effect
Conventional: Rayleigh,
Nakagami-m, Weibull-m, Rician.
Generalized: α− µ, κ− µ, η− µ.
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Introductory Background | Composite Fading Channels (1)

Performance analysis over multipath or shadowing scenarios alone is
relatively tractable. However, extending the analysis to composite
fading channels is rather cumbersome and intractable.

Examples:
Nakagami-m/Lognormal (NL) model (no closed-form)

fγ(x) =
2λmm

Γ(m)
√

2πζ

∫ ∞
0

xm−1

γmσm+1 e
− mx

γσ e
−(10 log σ)2

2ζ2 dσ. (1)

κ− µ Shadowed model [1] (complicated)

fγ(γ) =
µµmm(1 + κ)µ

Γ(µ)γ(µκ+ m)m
(
γ

γ
)µ−1 (2)

× exp(−µ(1 + κ)γ

γ
) 1F1(m, µ;

µ2κ(1 + κ)

µκ+ m

γ

γ
),

[1] J. F. Paris, “Statistical Characterization of κ-μ Shadowed Fading,” IEEE Trans. Veh.
Technol., vol. 63, no. 2, pp. 518–526, Feb. 2014.
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Introductory Background | Composite Fading Channels (2)

Various alternatives proposed, for examples:

The K - and KG - distributions:
Replaced the Lognormal with Gamma and integrate.

The RIGD and G -distribution:
Replaced the Lognormal with Inverse-Gaussian (IG) and
integrate.

Still complex and not a general solution.
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Introductory Background | Composite Fading Channels (3)

Another alternative proposed by Atapattu et al. [2]
Several models were approximated using the mixture Gamma
(MG) distribution via gauss-quadrature approximations.
Approximates: NL, K , KG , η − µ, κ− µ, Hoyt, and
Nakagami-m.

The pdf is given by

fγ(γ) =
K∑
i=1

αi

γ

x

γ

βi−1
exp(

ζix

γ
)

Pros: Very tractable, arbitrarily accurate.
Cons: Still not generalizable to all fading models.

[2] S. Atapattu, C. Tellambura, and H. Jiang, “A Mixture Gamma Distribution to Model the
SNR of Wireless Channels,” IEEE Trans. Wireless Commun., vol. 10, no. 12, pp. 4193–4203,
Dec. 2011.
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Objectives

We propose to approximate generalized and composite fading
channels using mixture distributions, namely using the mixture of
Gaussian (MoG) and mixture Gamma (MG) distributions.

Approximation methodologies:
Expectation-Maximization (EM) and Variational Bayes (VB).

EM was coined by Dempster et al. [3].
Useful for finding the maximum likelihood estimator (MLE) of
any distribution in the exponential family.

VB is the full Bayesian variant of EM; maximize the maximum
a posteriori (MAP) estimate.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data
via the EM algorithm,” J. Royal Statistical Soc., vol. 39, no. 1, pp. 1–38, 1977.
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The MoG distribution

We approximate the amplitude of fading models by the MoG
distribution, resulting in the following amplitude and
signal-to-noise (SNR) pdfs:

The MoG distribution

fα(x) =
C∑
j=1

ωj√
2πηj

exp(− (x − µj)
2

2η2
j

), (3)

fγ(γ) =
C∑
j=1

ωj√
8πγηj

1
√
γ

exp(−
(
√

γ
γ
− µj)

2

2η2
j

), (4)

where C is the number of mixture components, and ωj , µj , η
2
j correspond to

the weights, means and variances, respectively.
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Expectation-Maximization

Original Problem formulation

Assume that an observed vector y = {y1, . . . , yN}, drawn from any
of the fading channel amplitudes, follows the MoG distribution.
Then we need to find the MLE as follows:

θMLE = arg max
θ∈ˆ

L(MoG) (θ|y ,C) = arg max
θ∈ˆ

ln p(y |θ,C),

= arg max
θ∈Θ

N∑
i=1

ln
[ C∑
j=1

ωj√
2πη2

j

exp
(
− (yi − µj)

2

2η2
j

)]
. (5)

Maximization of (5) directly is analytically not tractable.
Instead, the problem is re-formulated such that it fits the EM
framework.
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Expectation-Maximization

Problem re-formulated according to EM
Regard the observed data y as incomplete and assume that we
have a discrete latent random variable called Z ∈ {1, . . . ,C}, such
that the complete random variable is X = (Y ,Z ).
Correspondingly, we maximize the complete-data log-likelihood
function or the so-called Q-function as follows:

θ(t+1) = arg max
θ∈Θ

Q
(
θ|θ(t)

)
(6)

= arg max
θ∈Θ

EX |y,θ(m) [log pX (X |θ)],

= arg max
θ∈Θ

N∑
i=1

C∑
j=1

ρ
(t)
ij

(
lnπj − lnN (yi |µj , σj)

)
,
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Expectation-Maximization

EM treatment to the MoG distribution

E-step: Compute ρ(t)
ij .

M-step: Compute:
ω

(t+1)
j = 1

N

∑N
i=1 ρ

(t)
ij , µ

(t+1)
j = 1

Nω
(t+1)
j

∑N
i=1 ρ

(t)
ij yi ,

η
(t+1)
j = 1

Nω
(t+1)
j

∑N
i=1 ρ

(t)
ij

(
yi − µ(t)

j

)2
, j = 1, ..,C .

This iterative procedure is terminated upon convergence, that
is when

L(t+1)
(MoG) (θ|y ,C)− L(t)

(MoG) (θ|y ,C) < δ, (7)
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Expectation-Maximization

Pros:
Accurate w.r.t.
mean-square error (MSE)
and Kullback-Leibler (KL)
divergence.

Cons:
Still no method to
determine the optimal C .
Singularities can occur
during simulation due to
overfitting.
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x

f γ(x
)

 

 

m=1, ζ=3dB, C=7, KL=2.2e−4, MSE=8.0e−6

m=4, ζ=1dB, C=4, KL=1.1e−4, MSE=8.3e−6

κ=1, µ=1, C=6, KL=1.6e−4, MSE=1.3e−5

κ=3, µ=1, C=5, KL=1.2e−4, MSE=1.0e−5

η=0.7, µ=0.4, C=8, KL=6.1e−4, MSE=6.9e−5

η=5, µ=10, C=3, KL=1.1e−4, MSE=2.3e−5

κ=1, µ=3, m=3, C=4, KL=1.2e−4, MSE=9.8e−6

Exact Distribution

Figure: MoG approximation for
different channel models.
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Bayesian Information Criterion for EM

Bayesian information criterion (BIC) is an information-theoritic
method to determine an appropriate number of mixture
components.
Introduced by Gideon Schwarz in 1978 [4].
Adds a penalty term to the negative log-likelihood as follows:

BICC = −2L(MoG)(θ̂|y ,C ) + C lnN

[4] G. Schwarz and Others, “Estimating the dimension of a model,” The annals of statis- tics,
vol. 6, no. 2, pp. 461–464, 1978.
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Bayesian Information Criterion for EM
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Figure: Normalized BIC versus the number
of components
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Figure: Optimal number of
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Variational Bayes (VB)

Variational inference is a bayesian approximation technique
that eliminates the challenges:

Possibility of facing singularities and over-fitting.
No effecient method to determine the number of mixture
components directly (on-the-go).

VB aims to maximize the a posteriori rather than the
likelihood. Moreover, the parameters to be estimated, θ, are
treated as nondeterministic (random variables).
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Variational Bayes

xn
µ

zn
π

σ

N

xn µ

enπ

α0

σ

β0

m0

ν0
W0

N

Figure: Bayesian networks representing EM (left) and VB [5] (right).

[5] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
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Variational Bayes
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EM-based Approximation for NL (Varying N)
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N=100 MSE=0.11732
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(VB) N=100 MSE=0.11255
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Figure: EM- (left) and VB-based (right) approximations of the NL
distribution with m = 2. The blue, red, and green distributions
correspond to 1E2, 1E3, and 1E4 data points with C = 6.
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Performance Analysis | Intro

To provide simplifying and unifying analysis for wireless
communication systems over various generalized and composite
fading channel models.

Moment generating function (MGF).
Average Channel Capacity, C.
Symbol Error Rate of L-branch MRC system.

Raw Moments.
Amount of Fading (AoF).

Outage Probability.
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Performance Analysis | Results

Mγ (s) =
C∑
i=1

ωi√
βi

exp

(
µ2
i s

βi

)
Q

(
− µi

ηi
√
βi

)
, (8)

E [γn] =
C∑
i=1

ωiγ
nη2n

i 2n Γ
(
n + 1

2

)
√
π

1F1

[
−n, 1

2
,− µ2

i

2η2
i

]
, (9)

AoF =
E
[
γ2]− E [γ]2

E [γ]2
. (10)

F (γth) =
C∑
i=1

ωi

Q (−µi

ηi

)
− Q


√

γth
γ
− µi

ηi

 , (11)
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Performance Analysis | Results

C ≈ B

ln 2

[
ln (1 + E [γ])−

E
[
γ2]− E2 [γ]

2 (1 + E [γ])2

]
, (12)

Ps (E) =
1
π

∫ (M−1)π
M

0

L∏
k=1

Mγ
k

(
sin2 ( π

M

)
sin2 (θ)

)
dθ, (13)
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Performance Analysis | Simulation Results
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Figure: Analytical and simulated
average channel capacity with B= 1
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(Analytical) m=1,ζ=1 dB
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(Analytical) m=3,ζ=1 dB

Monte Carlo Simulation

Figure: Analytical and simulation SER
of 2-branch MRC receiver with BPSK
for NL and RL fading channels.
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The MG Distribution

Here we approximate the SNRs of fading models by the MG
distribution, resulting in the following:

The MG distribution

fγ(x) =
K∑
i=1

αi

γ
(
x

γ
)βi−1 exp(−ζi

x

γ
), (14)

where K denotes the number of mixture components,
αi , i = 0, ..,K , is the mixing coefficient of the ith component
having the constraints 0 ≤ αiΓ(βi )

ζ
βi
i

≤ 1 and
∑K

i=1
αiΓ(βi )

ζβii

= 1. The

scale and shape parameters of the ith component are βi and ζi ,
respectively.
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Expectation-Maximization

Original Problem formulation

The observed vector is the SNR, which we call x = {x1, . . . , xN}.

θMLE = arg max
θ∈Θ

L(MG)(θ|x ,K )

= arg max
θ∈Θ

N∑
j=1

ln

[ K∑
i=1

αix
βi−1
j exp(−ζixj)

]
. (15)

Unlike in the MoG, the M-step does not have closed-form
estimates.
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Expectation-Maximization

EM treatment to the MG distribution

E-step: Compute: τ (t)
ij =

αiφ(xj |βi ,ζi )∑
l=1 αlφ(xj |βl ,ζl ) .

M-step: Compute: α(t+1)
i = 1

N

∑N
j=1 τ

(t)
ij .

As for βi , ζi coefficients, they are approximated directly using
non-linear approximation method, namely Newton-Raphson
algorithm.
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Expectation-Maximization | Analysis
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Figure: Approximation of instantaneous
SNR distribution of Lognormal,
Weibull, and RL for M = 0 dB.
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Fixed-gain dual-hop relaying scenario

Consider a dual-hop
amplify-and-forward (AF) relaying
scenario such that

γend−to−end =
γSR1γR1D

γR1D + U
,

where U = 1
G2N01

is a fixed-gain
constant.

Figure: Fixed-gain dual-hop
cooperative communication
system.
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Raw Moments

To calculate the raw moments of composite fading channels in
such system is intricate. However, with the MG distribution:

E[γn] =

∫ ∞
0

∫ ∞
0

(
γ1γ2

U + γ2
)n fγ1(γ1) fγ2(γ2) dγ1dγ2, (16)

E[γn] =
K∑
j=1

α1j ρ
n Γ(n + β1j)

ζ
n+β1j
1j

K∑
k=1

α2k

ρβ2k
2

Uζ2k

Γ(n)
G 1,2

2,1

(
1,1+β2k
n+β2k

∣∣∣∣∣ ρ2

Uζ2k

)
(17)
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Simulation Results | Average Channel Capacity

Interesting Scenario: |hSR1 | ∼ Weibull distribution with m = 4,
and |hR1D | ∼ NL distribution with (m = 4, ζ = 2 dB).
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Figure: Average channel capacity for the selected scenario with U = 0.5,
B = 0.5.
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Energy Detection Performance

Cognitive radios came as a viable solution to mitigate the
spectrum scarcity.
Here we are concerned with the performance of the energy
detector (ED) in generalized and composite fading channels.

The literature only offers a semi-analytic solution for the NL.
The K and KG distribution is widely utilized to study the ED
performance over RL channels.

Here we utilize the MG distribution to study the ED
performance.
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Energy Detection Performance

Goal is to study the detection and false-alarm probabilities in
MG-based fading channels.
We consider square-law combining (SLC) and square-law
selection (SLS) diversity schemes.

We derived the effective effective pdf under SLC, fγ,Σ.
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Impulsive Noise | Introduction

Most of contributions in literature assume white Gaussian
noise.

Ignoring the impact of impulsive noise caused by atmospheric,
man-made partial discharge, switching effect, and
electromagnetic interference.

Among many models advocated to characterize impulsive
noise, we adopt the Middleton Class-A (MCA) and ε-mixture
noise models.
Existing literature: Almost all works on impulsive noise
considers multipath fading or shadowing alone.
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MCA and ε-mixture Models

Middleton’s Class-A Model

fn(x) =
∞∑
k=0

Pr(T = k)fn|T=k(x |k) (18)

=
∞∑
k=0

e−AAk

k!
√

2πσ2
k

exp(− x2

2σ2
k

),

where A is the impulsive index that describes the average number of impulses

during some interference time, σ2
k = kA−1+Γ

1+Γ
σ2, λ =

σ2
g

σ2
i

is the Gaussian Factor,
which resembles the ratio of the variances of the background Gaussian
component the impulsive component.
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MCA and ε-mixture Models

ε-Mixture Model

fn(x) =
1− ε√
2πσ2

g

exp(− x2

2σ2
g

) +
ε√

2πσ2
i

exp(− x2

2σ2
i

). (19)

where ε denotes the fraction of time for which the impulsive noise occurs, with
0 < ε < 1. The ratio of the variances of the impulsive component to the
Gaussian component is given by ξ =

σ2
i
σ2
g
. Here the power of n is given by

σ2 = N0
2 = (1− ε)σ2

g + εσ2
i .

Note that the truncated two-term MCA model is a subset of
the ε-mixture noise model and not the other way round.
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Performance Analysis

Consider a Single-input-multiple-output communication scenario.
Again here we consider the MG distribution.
We derived the the following:

Analytical Pair-wise error probability (PEP) expressions with
MRC and SC.
Analytical Average channel capacity expressions with MRC and
SC.
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Simulation Results

/Users/omaralhussein/Dropbox/Life/Msc Topic (SFU)/Summer-2015/thesis/3_Latex_Thesis/V2_15Aug2015/Figures/Impulsive_MG_Chapter/Fig1_MRC_SC_AllFading.eps

Figure: SEP of BPSK with 4-MRC and
2-SC schemes for various MG based
fading channels with MCA Noise of
λ,A = 0.1, and Ċ = 10.

/Users/omaralhussein/Dropbox/Life/Msc Topic (SFU)/Summer-2015/thesis/3_Latex_Thesis/V2_15Aug2015/Figures/Impulsive_MG_Chapter/Fig3_MRC_CapVsEpsilon.eps

Figure: SEP of BPSK with MRC
scheme for NL fading with MCA Noise
of λ = 0.1, A = (0.1, 0.3, 0.9), and
Ċ = 10.
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Conclusions

We represented all generalized and composite fading channels
by the MoG and MG distributions.

The approximation methodologies relied on MLE and MAP
approaches, whereby the EM and VB algorithms were utilized.
For the MoG distribution, we provided several basic tools
essential for the analysis of wireless communication systems.
For the MG distribution, we nurtured the relevant literature
with many contemporary applications, including spectrum
sensing, diversity analysis and impulsive noise environments.
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Future Work

Several performance analysis tools and applications are yet to
be derived.

We utilized the vanilla EM and VB frameworks, and advanced
variants could be better.
Although our approximation methodology was applied to single
fading channels, it can be applied to fading scenarios.
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