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Abstract—An accurate statistical estimation of wind speed
probability density at a given site is crucial when making power
network planning decisions involving wind generation resources.
The use of parametric probability density functions, such as the
Rayleigh, Weibull and Gaussian distributions, can be problematic
as it can lead to model mis-specification at a given site. In this
paper, the use of the Gaussian Mixture Model (GMM) to estimate
wind speed variability is investigated and compared with the
above three popular parametric models using wind speed data
for six sites in northwest Europe. Results show that the GMM
produces the lowest error values with the highest percentage
improvements, and is the only model that consistently fails to
reject the null hypothesis when conducting the K–S goodness-of-
fit test.

Index Terms—Density estimation, Gaussian mixture model,
statistical analysis, wind speed models.

I. INTRODUCTION

A reliable probabilistic model of wind speed is required to

assess the impact of the large-scale integration of this intermit-

tent source of renewable energy into the power system. Small

differences in estimation can lead to significantly different

decisions in terms of turbine location and network planning

studies [1], [2]. Parametric Families of Probability Distribu-

tions (PFPDs), such as the Rayleigh, Weibull and Gaussian

families of distributions, have been widely used in the power

engineering literature to model wind speed variability. Such

studies include, but are not limited to, wind power potential

assessment in power system planning [3], voltage stability

for networks with distributed generation [4], wind turbine

power productivity prediction [5], optimal allocation of energy

storage systems in distribution networks [6], power reliability

assessment in hybrid power generating units [7], and multiple

microgrid design and clustering studies [8]. However, the use

of simple PFPDs can be problematic, leading to the risk of

model mis-specification.

In this paper, we propose the use of the Gaussian Mixture

Model (GMM) [9], which can be expressed as a finite convex

linear combination of Gaussian densities (each with different

probability density parameters). In fitting a finite mixture

distribution, the determination of an appropriate number of

mixture components is of paramount importance. Selecting a

small number of components yields an inaccurate representa-

tion, while a very large number of components unnecessarily

results in an over-fitting and an increase in complexity. In

this paper, we adopt the Expectation–Maximization (EM)

framework to estimate the parameters of the GMM and further

consider the Bayesian Information Criterion (BIC) in order to

optimally determine the number of mixture components.

The performance of the GMM is compared with three

parametric probability distributions (Rayleigh, Weibull, and

Gaussian distributions) which are most widely used to estimate

wind speed probability density using hourly wind speed data

at six sites in northwest Europe. Evaluations are carried out

using Kolmogorov–Smirnov (K–S) goodness-of-fit test, and

two statistical error measures: Mean Absolute Error (MAE),

and Root Mean Square Error (RMSE). Results show that

GMM yields the lowest MAE and RMSE values with percent-

age improvements of up to 77.9% when compared with the

Rayleigh distribution (MAE), and up to 42.8% when compared

with the Weibull distribution (RMSE).

The remainder of the paper is organized as follows. Sec-

tion II gives statistical information about wind speed data sets

used in the study. Section III provides a general overview

of popular parametric probability density distributions used

in estimating wind speed variability. A description of the

proposed Gaussian mixture model is given in Section IV.

Section V provides a full analysis of the resulting probability

density estimates including an evaluation of the performance

of the proposed EM-based GMM approach. Conclusions are

presented in Section VI.
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II. DATA SUMMARY

Hourly wind speed data (for the year 2014) was obtained

from the interactive web platform www.renewables.ninja [10]

for six sites in northwest Europe: Copenhagen in Denmark,

Kiel in Germany, Malin Head in Ireland, Black Law, Whitelee

and Schaw in Scotland. Fig. 1 shows the geographical lo-

cations of the six sites, and Fig. 2 shows the time series

plots of hourly wind speed data for a period of a week.

Table I lists the latitude and longitude coordinates in addition

to wind speed statistical information including the maximum,

minimum, mean, median, and standard deviation.

Fig. 1: Geographical locations of the six selected wind speed

sites.

III. POPULAR PARAMETRIC MODELS FOR WIND SPEED

DENSITY ESTIMATION

Wind speed probability distribution can be estimated using

the Rayleigh [6], Weibull [3], and Gaussian distributions [5].

The formulas for the Probability Density Functions (PDFs) for

the three selected distributions are listed in Table II, where X
is the wind speed random variable.

IV. GAUSSIAN MIXTURE MODEL

Let the jth entry of the random wind speed data

x={x1, . . . , xn} be modeled as a finite convex linear com-

bination of Gaussian densities,

fX(xj |θ) =
C∑
i=1

ωi φ(xj , θi), xj ≥ 0, j = 1, . . . , N (1)

where C is the number of mixture components. Each ith

mixture component is expressed as

φ (xj , θi) =
1√
2πσ2

i

exp

(
− (xj − μi)

2

2σ2
i

)
, (2)

where the weight of the ith component is ωi > 0, with∑C
i ωi = 1, and θ = ({ωi, μi, σ

2
i }Ci=1). The parameters μi and

σ2
i correspond to the mean and variance of the ith component,

respectively.

The GMM inherits the advantages of the Gaussian distribu-

tion, where its individual densities are efficiently characterized

by the first two moments [11], [12], and have the so-called

“universal-approximation” property. This was proven by the

Weiner’s approximation theory [9] which proves that the

GMM distribution can approximate any arbitrarily shaped non-

Gaussian density. The EM framework is employed in this

paper to estimate the GMM parameters [13].

Ideally, one would like to determine the parameters (θ) that

maximize the log-likelihood function (ln Pr(x|θ, C)). Maxi-

mizing the log-likelihood function is analytically intractable

[13], [14]. Instead, the EM algorithm solves the Maximum

Likelihood Estimation (MLE) problem through two iterative

steps: (1) Expectation Step and (2) Maximization Step. By

adopting the EM framework, the MLE problem is approached

by maximizing the expected log-likelihood of the data through

an iterative approach. The EM algorithm, however, requires the

number of mixture components (C) as an a priori input. As

C is increased, the log-likelihood function can be maximized

further at the expense of increased complexity in the model,

and can lead to over-fitting.

To resolve this issue, a simple yet effective unsupervised

information theoretic approach, called the BIC approach is

adopted [15], [16]. The BIC adds a penalty term to the log-

likelihood function as C in increased, as follows

BIC(C) = −2 lnPr(θ̂|x, C) + C ln(n) (3)

where θ̂ is the parameter such that the log-likelihood func-

tion is maximized. In this paper, the BIC is employed in

conjunction with the EM algorithm to find an appropriate

number of component, while maximizing the log-likelihood

function. The EM framework is terminated when the BIC

measure does not improve. In a large-sample setting, the

number of components determined by the minimum BIC is

asymptotically optimal from the perspective of the Bayesian

posterior probability (Pr(θ|x, C)) [15]. It is noteworthy to

point out that the EM algorithm is guaranteed not to get worse

as it iterates [13]. Moreover, it has an advantage of being a

completely unsupervised learning algorithm, which makes it

very convenient for wind speed probability density estimation.

V. RESULTS

In this section, the performance of the EM-based GMM

approach for wind speed probability density estimation is

assessed via comparisons with three popular parametric prob-

ability density models (Rayleigh, Weibull, and Gaussian dis-

tributions) using hourly wind speed data from six sites in

northwest Europe. The BIC-assisted EM-based GMM routine,

described in Section IV, was written in MATLAB. In addition,

the function raylfit, wblfit, mle, raylpdf, wblpdf
and normpdf were used to obtain the parameters and the

density estimates for the three PFPDs in Table II. Data

histograms were produced using MATLAB’s histogram
function with density scaling.

Fig. 3 shows the normalized histogram plots of wind speed

data at the six sites, overlaid with the three selected parametric

probability distributions and the Gaussian mixture PDF. The

parameters of the three selected popular distributions were

estimated using maximum likelihood estimation, and are listed



TABLE I: Wind Speed Data Information

Site Location Geographical Coordinates (°) Wind Speed (m/s)

Latitude Longitude Maximum Minimum Mean Median Standard Deviation

Site 1 Copenhagen, Denmark 55.69 12.57 23.69 2.41 9.10 9.09 2.82
Site 2 Kiel, Germany 54.46 10.20 19.17 2.63 8.87 8.90 2.73
Site 3 Black Law, Scotland 55.83 -3.82 19.10 1.85 7.40 7.01 2.79
Site 4 Whitelee, Scotland 55.71 -4.34 22.20 2.06 8.43 7.95 3.23
Site 5 Schaw, Scotland 55.46 -4.46 23.26 2.40 9.06 8.63 3.31
Site 6 Malin Head, Ireland 55.38 -7.40 24.32 2.37 10.05 9.53 3.80

Mon Tue Wed Thur Fri Sat Sun
Week Day

0

5

10

15

20

25

W
in

d 
Sp

ee
d 

(m
/s

)

(a) Site 1

Mon Tue Wed Thur Fri Sat Sun
Week Day

0

5

10

15

20

25

W
in

d 
Sp

ee
d 

(m
/s

)

(b) Site 2

Mon Tue Wed Thur Fri Sat Sun
Week Day

0

5

10

15

20

25

W
in

d 
Sp

ee
d 

(m
/s

)

(c) Site 3

Mon Tue Wed Thur Fri Sat Sun
Week Day

0

5

10

15

20

25

W
in

d 
Sp

ee
d 

(m
/s

)

(d) Site 4

Mon Tue Wed Thur Fri Sat Sun
Week Day

0

5

10

15

20

25

W
in

d 
Sp

ee
d 

(m
/s

)

(e) Site 5

Mon Tue Wed Thur Fri Sat Sun
Week Day

0

5

10

15

20

25

W
in

d 
Sp

ee
d 

(m
/s

)

(f) Site 6

Fig. 2: Time series of hourly wind speed data for a period of a week.



TABLE II: Popular Parametric Families of Probability Distributions

Distribution Probability Density Function Domain Parameters

Rayleigh fX(x) =
x

b2
e−(x2/2b2) x ∈ [0,∞) Scale: b ∈ (0,∞)

Weibull fX(x) =
k

λ

(x

λ

)k−1
e−(x/λ)k x ∈ [0,∞)

Scale: λ ∈ (0,∞)

Shape: k ∈ (0,∞)

Gaussian fX(x) =
1√
2πσ2

e
− (x−μ)2

2σ2 x ∈ (−∞,∞)
Mean: μ ∈ (−∞,∞)

Variance: σ2 ∈ (0,∞)

TABLE III: Parametric Probability Distributions Parameters

Site Rayleigh Weibull Gaussian
b λ k μ σ2

Site 1 6.73 10.09 3.50 9.09 7.89
Site 2 6.54 9.81 3.55 8.84 7.35
Site 3 5.62 8.35 2.83 7.43 7.86
Site 4 6.41 9.52 2.78 8.46 10.56
Site 5 6.85 10.21 2.91 9.10 11.09
Site 6 7.64 11.35 2.82 10.10 14.59

in Table III. The parameters of the Gaussian mixture PDF

were estimated using EM algorithm and the number of optimal

mixture components are determined using the BIC approach.

Visually, these plots show significant discrepancies between all

three popular probability distributions and the data histogram,

and more faithful estimates from the GMM method. In the

remainder of this section, the performance of the GMM is

evaluated alongside the three selected parametric distributions

using K–S goodness-of-fit test, and two standard statistical

error measures: RMSE and MAE.

A. Kolmogorov–Smirnov Goodness-of-fit Test

The Kolmogorov–Smirnov test is used to test if a given

data set comes from a particular statistical model. For each

of the four distributions under consideration, the question is

asked whether the null hypothesis that the observed data are

independently sampled from that model can be rejected. The

fundamentals behind the K–S goodness-of-fit test can be found

in standard statistics textbooks [17]. Results are presented in

terms of a p-value which, informally, is a measure of the

evidence against the null hypothesis, with low p-values (e.g.

p < 0.01) corresponding to strong evidence against the null

hypothesis. It is important to note, however, that a high p-value

may not be interpreted as an evidence supporting a particular

model. p-values resulting from the K–S test for each model

are presented in Table IV, where the values highlighted in bold

indicate a failure to reject the null hypothesis. The GMM is the

only model that consistently produces p-values that indicate

a failure to reject the null hypothesis. On the other hand,

the three popular parametric models produce low p-values,

suggesting they are unsuitable for modeling wind speed data.

As such, the proposed approach is a more suitable candidate

for modeling the given wind speed data.

TABLE IV: p-values for Kolmogorov–Smirnov Test

Site Rayleigh Weibull Gaussian GMM

Site 1 6.41×10−80 24.53×10−02 58.67×10−02 6.70×10−02

Site 2 2.00×10−90 5.31×10−02 27.27×10−02 5.57×10−02

Site 3 4.18×10−39 6.85×10−10 2.37×10−13 84.42×10−02

Site 4 9.28×10−38 2.59×10−09 5.15×10−15 49.65×10−02

Site 5 9.01×10−49 2.66×10−12 9.36×10−14 18.71×10−02

Site 6 8.88×10−34 2.76×10−08 7.91×10−13 23.18×10−02

B. Root Mean Square Error

Root Mean Square Error provides a general-purpose error

measure and is a common tool for numerical comparisons

when assessing PDF estimates. RMSE is defined as the square

root of the average of the square of the errors between the

observed and expected probabilities:

RMSE =

√√√√1

t

t∑
i=1

(yi − ŷi)2 (4)

where t is the number of bins of data, yi is the probability

of wind speed being within bin i calculated from the data set,

and ŷi is the probability within the same bin calculated from

the estimated data set (i = 1, . . . , t).
Table V lists the computed RMSE values for the six sites

together with percentage improvements calculated with respect

to the Rayleigh distribution error. The proposed GMM gives

the lowest RMSE value among all the evaluated methods for

all six sites with percentage improvements between 51.5%-

77.2% (at an average of 61.3%). As expected, parametric

distributions produced the highest RMSE values.

C. Mean Absolute Error

Mean Absolute Error is a global error measure metric that

calculates the average of the absolute values of the deviations

of the probability within bin i calculated from the estimated

data set, from the probability of wind speed being within the

same bin, and is given by:

MAE =
1

t

t∑
i=1

|yi − ŷi| (5)

where t, yi, and ŷi are the same as in (4).

Table VI lists the computed MAE values and the cor-

responding percentage improvements (with respect to the

Rayleigh distribution) for the six sites. Again, the proposed
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Fig. 3: Probability density plots and histograms.

TABLE V: Root Mean Square Error and Percentage Improvements

Site Rayleigh Weibull Gaussian GMM

Site 1 1.24×10−2 (–) 3.07×10−3 (75.2%) 2.95×10−3 (76.3%) 2.83×10−3 (77.2%)
Site 2 1.19×10−2 (–) 4.20×10−3 (64.6%) 4.00×10−3 (66.3%) 3.81×10−3 (67.9%)
Site 3 8.85×10−3 (–) 5.76×10−3 (35.0%) 6.45×10−3 (27.1%) 3.29×10−3 (62.8%)
Site 4 8.64×10−3 (–) 5.88×10−3 (32.0%) 6.75×10−3 (21.9%) 4.19×10−3 (51.5%)
Site 5 9.05×10−3 (–) 5.77×10−3 (36.2%) 6.34×10−3 (29.9%) 3.89×10−3 (56.9%)
Site 6 8.22×10−3 (–) 5.33×10−3 (35.2%) 6.09×10−3 (25.9%) 3.98×10−3 (51.6%)



TABLE VI: Mean Absolute Error and Percentage Improvements

Site Rayleigh Weibull Gaussian GMM

Site 1 9.02×10−3 (–) 2.26×10−3 (75.0%) 2.05×10−3 (77.3%) 2.00×10−3 (77.9%)
Site 2 8.78×10−3 (–) 2.91×10−3 (66.8%) 2.79×10−3 (68.2%) 2.42×10−3 (72.4%)
Site 3 5.81×10−3 (–) 3.94×10−3 (32.2%) 4.69×10−3 (19.3%) 2.34×10−3 (59.7%)
Site 4 5.82×10−3 (–) 4.01×10−3 (31.0%) 4.85×10−3 (16.6%) 2.66×10−3 (54.2%)
Site 5 6.57×10−3 (–) 4.07×10−3 (38.1%) 4.51×10−3 (31.3%) 2.86×10−3 (56.5%)
Site 6 5.56×10−3 (–) 3.83×10−3 (31.2%) 4.43×10−3 (20.3%) 2.93×10−3 (47.3%)

GMM produces the lowest errors with percentage improve-

ments between 47.3%-77.9% (at an average of 61.3%), and

consistent with previous results, all three selected parametric

distributions produced much higher error values in line with

our previous observations.

VI. CONCLUSION

This paper presents an evaluation of the performance of

BIC-assisted EM-based GMM for obtaining the probability

density estimate of wind speed at a given site for use in esti-

mating the electric power generation from wind turbines/farms

needed in power system planning and reliability studies. In

this work, the EM algorithm is adopted to estimate the pa-

rameters of the Gaussian mixture PDF, and the BIC approach

is considered to optimally determine the number of mixture

components. The proposed model is assessed against three

popular parametric wind speed models (Rayleigh, Weibull,

and Gaussian distributions) using hourly wind speed data at

six sites in northwest Europe. Evaluations are carried out

using K–S goodness-of-fit test, and two standard statistical

error measures. Based on the studied data sets, all three

popular parametric models were shown to be inadequate for

modeling wind speed data. Results also confirm the suitability

of the GMM in obtaining accurate wind speed probability

density estimates producing the lowest error values with the

highest percentage improvements, and is the only model that

consistently fails to reject the null hypothesis when conducting

the goodness-of-fit test.
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