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Abstract—Subsampling is often used to reduce the complexity
of large datasets. However, such methods need to ensure that
the subsampled data are representative of the original dataset.
Here, we introduce a new clustering-based data condensation
(subsampling) framework for large datasets. The framework
relies on the use of stratified sampling, Voronoi diagrams, and
variational Bayes-based Gaussian mixture clustering. We tested
the proposed framework on three large imbalanced benchmark
datasets, namely cod-RNA, ds1.10, and ds1.100. The efficiency
and generality of the proposed framework were assessed by
comparing the predictive performance of the reduced datasets
with the original datasets over two machine-learning classifiers,
namely the random forest, and the radial basis function net-
work. The evaluation metrics included the accuracy, F-measure
and reduction percentage. We found that very high reduction
percentages can be achieved using our new framework while
maintaining satisfactory predictive performance.

Index Terms—Data Condensation, machine learning, subsam-
pling, clustering.

I. INTRODUCTION

In machine learning (ML), datasets can broadly be classi-
fied into three types based on the existence of data labels:
supervised, semi-supervised, and unsupervised. In supervised
learning, fully labeled datasets are used, whereas in semi-
supervised learning the datasets may be partially labeled,
for example to reduce costs when full data labeling is ex-
pensive. In either category, when the dataset is very large,
there is a need to reduce the dataset or select a smaller
representative dataset, whereby the predictive performance
of the condensed dataset C' is close to that of the original
dataset D. In supervised learning, such need is motivated by
the fact that most conventional ML algorithms do not scale
to large datasets in terms of computational time and space
complexity [1f]. In addition, large datasets often reduce the
classifier’s generalization accuracy due to overfitting caused
by noisy data, and irrelevant or redundant features. Indeed,
as the size of the dataset increases, the learning curve in
a classifier’s performance reaches a plateau [2]. In semi-
supervised learning, requesting labels for the whole dataset
is often cumbersome and unnecessary, and it is therefore
more appropriate to produce a smaller representative dataset
to request for labeling, which calls for the process of data
condensation.

Data condensation (reduction) can be achieved by either
instance reduction (instance selection) or dimensionality re-
duction techniques. Instance selection methods may be clas-
sified as either wrapper methods or filter methods. In the
former, the instance selection criterion is based on the error
of a predetermined classifier model, commonly a k-nearest
neighbor (k-NN) classifier [3]. For example, the condensed
nearest neighbor (CNN) [4] is an incremental method in which
the initial step involves the random selection of one instance
from each class, which is assigned to C. Then each new
instance p (¢ D) is classified incrementally using C. If
p is misclassified, then it is included in C' and so forth.
Many extensions and variants of the CNN algorithm have
been reported, e.g. the reduced nearest neighbor (RNN) [5],
selective nearest neighbor (SNN) [6]], and generalized con-
densed nearest neighbor (GCNN) methods [7]]. Another useful
classifier when combined with instance selection is the support
vector machine (SVM) [{8], [9]]. For example, the SV-ENNC
algorithm classifies D using the SVM, and then the resulting
support vectors are clustered using the k-means algorithm [9].
Consequently, instances belonging to homogeneous clusters
are retained. If the cluster is not homogeneous, then only
instances of the majority class are preserved.

The other category of instance selection methods (filter
methods) use a selection criterion that is not based on any
classification algorithm. Various filter methods have been
reported, some of which rely on selecting the so-called border
instances. An instance p (¢ D) is a border instance of
some class A if p € A and if p is the nearest neighbor
of an instance belonging to another class that is not in A
[10]. Examples of such algorithms include POP and POC-NN
[11], [12]. Some other filter methods rely on clustering, in
which D is split into a number of clusters and the centroids
(medoids) of the clusters are selected for the reduced set C
[13]-[18]]. Examples include the generalized-modified Chang
(GCM) algorithm, which merges clusters containing similar
classes and then fetches their centroids [|17[], and the nearest
sub-class classifier (NSB) method, which selects different
numbers of centroids per class using the maximum variance
cluster algorithm [18]]. Wrapper and filter methods have been
comprehensively reviewed [2f], [[10], [[19].



In this paper, we introduce a new filter-based data condensa-
tion framework for supervised, semi-supervised and unsuper-
vised datasets through the use of stratified random sampling
and variational inference machinery. In contrast to the afore-
mentioned filter-based techniques, the proposed framework
can be generalized not only to fully labeled datasets but also
to semi-labeled and unlabeled datasets. Briefly, the framework
first selects some representative instances from D, which are
used to construct a Voronoi diagram. For every nth Voronoi
region, we run the variational Bayes-based Gaussian mixture
(VBGM) clustering algorithm to select K, centroids. The
Voronoi diagram allows us to apply the clustering-based data
condensation algorithm to each Voronoi region in parallel.
We test our framework on three large imbalanced benchmark
datasets, namely cod-RNA [20], ds1.10, and ds1.100 [21]. We
use two ML classifiers, namely on the random forest (RF),
and the radial basis function network (RBFN).

The rest of this paper is organized as follows. Section [[I]
introduces the three different stages of the data condensation
framework. Section provides a short summary of the
proposed framework. Section describes our comparative
predictive performance tests on the original and condensed
benchmark datasets using different ML classifiers. Section [V]
presents our conclusions.

II. DATA CONDENSATION ALGORITHM

In supervised learning, one is given a training set B &
RN*M " \where N and M correspond to the number of
instances (tuples) and the number of features (attributes),
respectively. Each instance {b,}Y_; (€ R*M) is mapped
into some target value {t,})_, (€ R). The dataset D is a
concatenation of B and t.

The proposed data condensation framework which extends
the works of Zaknich and Yu et al. [22f], [23]] consists of the
following main stages.

o Sampling: Using stratified sampling, the original dataset
D is sampled to produce a representative set R € REF*M |
where L < N.

o Voronoi diagram: A Voronoi diagram V(R) is con-
structed based on the representative set R.

o Clustering: The original dataset D is superimposed over
the constructed Voronoi diagram V(R), where for each
nth Voronoi region VR(r,, R) € V(R) centered by
an instance r, € R, K, centroids are fetched out
using the variational inference machinery, specifically via
the use of the bariational Bayes-based Gaussian mixture
(VBGM) algorithm. The centroids of all Voronoi regions
{VR(r,, R)}E_, form the new reduced dataset, C.

The following sections discuss each stage in greater detail.

A. Sampling

In the context of ML, sampling is often used as a standalone
tool to reduce the size of large datasets. However, it is
cumbersome to characterize the loss-or rarely the gain- in
the subsequent performance predictive measures because the
problem is data dependent [24]. Thus, the choice of the

sampling technique and its corresponding sample size is a
crucial and sensitive step.

Sampling strategies can be classified as dynamic or static
[25]. Dynamic sampling requires some knowledge of the clas-
sification algorithm. As such, the classifier is used directly to
determine whether the sample is representative of the whole or
not. This is reminiscent of the wrapper condensation approach
explained above. In contrast, the classification algorithm in
static sampling is assumed to be unknown, and certain fixed
statistics-based criteria must be used to determine whether or
not the sample is representative of the original dataset.

Here, we prefer static sampling because it allows us to
make no assumptions about the subsequent machine-learning
algorithm, thus offering more versatility. For the sampling
technique, we adopt the stratified sampling approach. In simple
random sampling (SRS), a sample R is selected uniformly
from D, with replacement following a binomial distribution.
Equivalent weights are given to all samples in the dataset so
that any sample is chosen with equal probability regardless of
whether or not it was previously sampled [26]. SRS minimizes
bias and simplifies further analysis, but if the dataset is imbal-
anced then stratified sampling is better. In this context, D is
divided into set of strata according to the different target values
in £, and SRS is performed on each stratum independently.
Typically, stratified sampling can be implemented using four
known approaches, namely proportional sampling, equal size
sampling, Neyman’s allocation, and optimal allocation. Here
we adopt proportional sampling, in which the proportion
sampled from each stratum is equal in the sample as it is in
the original dataset. For example, if D is highly imbalanced,
then a higher sampling percentage would be allocated to the
small target stratum.

Upon sampling from D to produce R, we need to assess
whether or not the sample is sufficiently representative. There
are two types of statistical tests for this purpose: parametric
and non-parametricl. Parametric tests make assumptions about
the statistical distribution of the original dataset. For example,
the well-known t-tests and z-tests assume assume that the
underlying data are normally distributed. In contrast, non-
parametric tests assume no underlying statistical structure. In
order to maintain generality in our framework, we use non-
parametric analysis and rely on the relative entropy (Kullback-
Leibler divergence) as a measure of goodness of fit between
any mth feature r,, (¢ RY*1) and its corresponding mth
feature in the original dataset d,, (€ RN*!). The relative
entropy between some two vectors  and y is given by
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where F is the length of the vectors x, y, and Pr{[i]} is the
probability of the @[¢]. In our case, r,, and d,, are not of the
same length. Therefore, we fairly discretize both vectors to £/
levels.

In this paper, we perform this test using the most signif-
icant features. The feature subset selection is a well-studied

Dir(z,y) =



problem in the open literature, whereby a feature selection
algorithm consists of a search technique in conjunction with
an evaluation metric. Here we rely on a simple filter-based
feature selection method, whereby the evaluation metric is the
information gain with respect to the class as follows,

IG = H(class) — H(class|Attribute),

where H(x) is the entropy of x, given by H(x) =
- Y7, Pr(@[i]) In Pr(ai]).

B. Voronoi Diagram

Based on the subsampled dataset R, a Voronoi diagram
(Dirichlet tessellation) V(R) is constructed by partitioning the
dataset space into L Voronoi regions VR(r,, R) € V(R)
whose centers r,, are instances in R. A brief rigorous def-
inition of the Voronoi diagram is provided below [27]. If
T,y € RM | then the bisector of x and Y,

B(z,y) ={s e RY|||lz —sll, = [ly = sll,} (D

is the perpendicular line through the center of the line segment
Ty, where A denotes the closure of some set A [28], and
|||, corresponds to the p-norm distance, defined as ||z||, =
(Zi\il z¥)"/7. The bisector separates the half plane D(z,y)

defined as:
D(z,y) = {s e RM[|lz — s, < [ly —sl[,}. (@

The corresponding Voronoi region of & with respect to R is
thus written as:

VR(z,R)= ()] D(=y). 3)

YER y#x

The Voronoi diagram V(R) is the collection of all Voronoi
regions. The naive method for computing a Voronoi diagram
is by the brute force approach, using the following basic
definition [29]:

VR(rn, R) = {x € RMVj £ n, [|r, — |, < [|r; — ||, }.

“)
Several more efficient algorithms exist to compute the Voronoi
diagram, such as the incremental construction, divide & con-
quer, and plane sweep methods. According to Theorems 3.3
and 3.4 in reference [27]], the divide & conquer algorithm and
the plane sweep constructs a Voronoi diagram of n points
within time O(nlogn) and linear space, in the worst case,
where both bounds are optimal.

Here, we use the Euclidean distance measure (i.e., p = 2).
However, it is worth mentioning that variety of other distance
metrics can be chosen depending on the nature of the problem
and the data. For example, for continuously-valued attributes,
suitable distance metrics include the Minkowski, Mahalanobis,
Chebychev, Camberra, Quadratic, Correlation, Chi-square dis-
tances, as previously reviewed [19]]. If the data are nominal,
then the overlap metric or the value difference metric (VDM)
can be used [19]. In addition, cheap distance metrics can
be used for highly-dimensional datasets. For example, only

the most significant features can be chosen for the distance
metric, which in turn drastically reduces the time latency
when computing the distances. Moreover, the construction of
an approximate Voronoi diagram can be achieved using kd-
trees [30], [31]. This stage is critical because it reduces the
complexity of the next clustering stage, where we assume that
data points which are far apart do not have an effect on each
other. Importantly, our framework allows parallel condensation
to be performed on the different Voronoi regions.

C. Clustering

After constructing the Voronoi diagram, V(R), we overlay
it with the original dataset D. Now our goal is to fetch
representative centroids from each Voronoi region, for which
the collection of all centroids comprises the reduced dataset
C. The problem is now reduced to the two following queries:
(1) Which clustering algorithm do we choose? (2) How many
centroids per Voronoi region should be fetched?

Since we assume this data condensation framework is
applicable to all types of datasets, namely labeled, unlabeled,
and semi-labeled, then utilizing the labels of the instances
for the clustering algorithm is not assumed. One of the most
common clustering preferences is the k-means clustering,
which minimizes the within-cluster sum of squares measure.
This optimization problem is generally solved by two it-
erative phases via the use of the expectation-maximization
(EM) algorithm [32]. The k-means algorithm performs the
hard assignment of points to clusters, which might not be
an appropriate idea for the points that lie midway between
the cluster centers and the decision boundary [33]. A more
accurate approach is to adopt the soft clustering alternative of
the k-means, which is realized by assuming that the set of
data points in each Voronoi region (V R(r,,, R)) is distributed
according to some probabilistic (generative) model, such as
the GM.

Variational Bayesian (VB) or variation inference is a
Bayesian treatment technique that eliminates many challenges
that arise when working with the maximum likelihood and
maximum log-likelihood approach. First, maximizing the log-
likelihood function through the EM algorithm is an ill-posed
problem because of some singularities that may occur, espe-
cially in highly non-parametric datasets such as which exist
in ML literature. Second, the EM algorithm is susceptible to
overfitting due to the inherent use of the maximum likelihood
approach [33]]. Third, The vanilla EM algorithm does not
provide a way of determining the optimal number of clusters,
K,,. Here, we adopt the variational inference machinery based
on the GM model [33} Section (10.2)]. The general technique
can be generalized to other exponential distributions; interested
readers are referred to [34]], [35].

In this paper, for each Voronoi region, the VB algorithm
is initialized with % clusters, where U, is the number of
datapoints in the nth Voronoi region. In the VB algorithm
[33, Section (10.2)], the hyper parameter, «, reflects our
confidence of the assigned initial conditions. The larger the
value of ag, the more influence the prior has on the posterior



distribution. Setting oy < 1 induces sparsity, if any, in the
corresponding mixing coefficients 7w. The VB algorithm there-
fore offers a complexity-free method to determine the effective
number of centroids in a Voronoi region. In addition, the VB
algorithm is neither susceptible to overfitting nor is vulnerable
to potential singularities, in contrast to the likelihood approach.

III. SUMMARY OF THE SUBSAMPLING FRAMEWORK

The data condensation framework consists of three main
stages. The following pseudocode in Algorithm [I] illustrates
the proposed framework.

Algorithm 1: The proposed subsampling framework

1 Procedure ReduceDataset(D, S);
Output: C

2 R < StratifiedSampling(D, S); > Stage 1
3 V(R) + ConstructVoronoi(R); > Stage 2
4 Overlay D onto V(R);

5 > Stage 3
6 while n < .5 x N do

C + C+ VBGM(VR(r,, R).\/%);

=

8 end

In the pseudocode, the framework requires the Dataset D
and an initial (rough) sampling percentage S has a value
between 0 and 1. During the first stage, stratified random
sampling is called to select a representative set R from D,
where the number of selected instances corresponds to the
specified percentage S. Due to the imbalance in the benchmark
datasets, all instances from the minority class are selected.
During stage 2, based on R, a Voronoi diagram V(R) is
constructed by partitioning the dataset space into L = S x N
Voronoi regions V(r,, R) € V(R). Finally during stage 3,
the original instances from D are overlaid back onto V(R)
and the VBGM clustering algorithm is used to fetch at most

% centroids from each nth Voronoi region. We set g to

0.01, which usually results in the selection of fewer than %

centroids. Therefore, although the sampling percentage is
specified at the beginning of the algorithm, the final sampling

percentage is most slightly lower, where the highest worst case
L

. . K /
condensation percentage is R where K,, < %

IV. FRAMEWORK VALIDATION AND TESTING

We tested the proposed data condensation framework by
reducing three large benchmark datasets and studying their
predictive performance of the framework against the RF and
RBEN classifiers, using 10-fold cross validation. The predic-
tive performance measures included the following: accuracy,
F-measure, and training time. We found that the framework
outperformed the existing stratified sampling technique con-
siderably at low sampling percentages, and minimized the
variability of the predictive performance measures.

Dataset  # of Instances (N)  Dimensionality (M)  Class (0:1)

cod-RNA 22,660 8 22,000:660

ds1.10 26,733 10 25,929:804

ds1.100 26,733 100 25,929:804
TABLE I

SUMMARY OF BENCHMARK DATASETS.

A. Benchmark Datasets

The first two datasets (ds1.10 and ds1.100) were down-
loaded from their online source [21]]. These two datasets are
imbalanced dense datasets of 10 and 100 dimensions, respec-
tively. They were obtained by applying principal component
analysis (PCA) to a sparse dataset (dsl) which is provided
by the National Cancer Foundation [36]]. Each row in the
original ds1 dataset comprises a chemical or biological exper-
imentation in which the result is binary. The third benchmark
dataset (cod-RNA) was developed for detecting non-coding
RNAs [20], [37]. Table [l summarizes the properties of the
three benchmark datasets.

B. Evaluation and Analysis

We study the relation between the sampling percentage and
various evaluation measures including the accuracy (3), F-
measure (6) and training time. Each feature vector may be
assigned to either positive or negative class. A positive instance
is counted as true-positive (TP) if it is correctly classified, and
false-positive (FP) otherwise. A negative instance is counted
as true-negative (TN) if it is correctly classified, and false-
negative (FN) otherwise. The accuracy is given by:

We investigated the relationship between the sampling per-
centage and various evaluation measures including the accu-
racy (5), F-measure (6) and training time. Each feature vector
was assigned to either positive or negative. A positive instance
is counted as true-positive (TP) if it is correctly classified, and
as false-positive (FP) otherwise. The accuracy is given by

B TP + TN
- TP+ TN+ FP +FN’
Another evaluation metric that is particularly useful for imbal-

anced data is the F-measure, which is the harmonic mean of
the precision and recall, expressed as:

Acc 5)

recision.recall
F=27P

(6)

precision + recall’

where precision = %ﬂﬂp, and recall = %. We also
measured the variances of the accuracy, i.e. 0%,., and the
F-measure, 0%, to ensure the generality of our approach.
We also compared the performance of the proposed frame-
work against the naive stratified sampling strategy, whereby
the condensed dataset is simply the output of stage 2. The
average accuracy and F-measure of the RF classifier versus the
sampling percentage for the cod-RNA and ds1.10 ae shown in

Fig. [T and Fig. 2] respectively.
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Fig. 1. Average accuracy of the RF classifier with 10-fold cross validation
for the cod-RNA and ds1.10 benchmark datasets with the proposed method
and the stratified sampling.
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Fig. 2. Average F-measure of the RF classifier with 10-fold cross validation
for the cod-RNA and ds1.10 benchmark datasets with the proposed method
and the stratified sampling.

Our proposed condensation framework shifted the average
accuracy curve by a considerable amount for the two datasets
while reducing the variances of the measures (Fig. [I). For
example, if we sample only 10% of the cod-RNA dataset
using stratified sampling alone, the average accuracy was
Ace = 84% with a variance of 0%,, = 1.5, whereas using
our condensation framework, the accuracy increased to Acc =
94% with a variance reduced to 0%, = 0.4. Furthermore,
the predictive performance for only 10% of the dataset was
very close to maximum accuracy (Accpae = 98%). Similar
improvements were observed for the F-measure (in Fig.2). A
consistent improvement was observed for the ds1.100 dataset,
but it was not shown for the sake of clarity.

Next, we test our framework with the RBFN classifier.

Dataset Sampling F1 Acc 012,:1 0124 ce

cod-RNA - 09853  97.114  1.71E-07  0.0035
ds1.10 - 09853  97.587  5.57E-07  0.0460
ds1.100 - 0.9876  97.849  1.19E-06  0.0426

cod-RNA  Stratified  0.9339  88.788  291E-05  0.4195
dsl1.10 Stratified ~ 0.9270  87.748  5.47E-05  2.2967
ds1.100 Stratified ~ 0.9430  90.305  0.000110 1.7797

cod-RNA  Proposed  0.94431 90327  5.01E-05  0.3715
dsl1.10 Proposed  0.94788  90.726  1.81E-05  0.4149
ds1.100 Proposed  0.96279 93268  5.54E-05  1.0440

TABLE II

PREDICTIVE PERFORMANCE OF THE RBFN CLASSIFIER WITH SAMPLING
PERCENTAGES OF 100% AND 17% WITH THE STRATIFIED SAMPLING AND
THE PROPOSED METHOD.

Likewise, our framework shows better performance than the
stratified sampling for the three datasets. Table [II] provides a
summary of the obtained predictive performance measures for
the proposed subsampling framework and the naive subsam-
pling when the sampling percentage is 100% and 17%.

V. CONCLUSION

We have developed a clustering-based data condensation
framework which relies on the use of stratified sampling,
Voronoi diagrams, and the variational inference machinery
for clustering. Three large imbalanced benchmark datasets
were tested, and we confirmed that the proposed data con-
densation framework has the ability to improve the predictive
performance of machine learning classifiers at low sampling
percentages. The proposed framework is scalable to large
datasets as it allows for parallel clustering mechanisms. The
proposed framework stimulates several interesting questions
for further research. One can further investigate the effective-
ness of each stage, and how they can be improved in the
context of problem-dependent or -independent frameworks.
Moreover, the proposed mechanism decouples the different
stages for efficiency. However, it can yield enhanced predictive
performance when the different stages are jointly considered.
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