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Abstract—Future wireless networks are evolving towards en-
abling reliable communications for miniature-sized and resource-
constrained Internet-of-things (IoT) devices, imposing stringent
requirements on the future sixth-generation (6G) mobile networks.
These requirements include low cost, ultra-low latency, improved
spectral and energy efficiencies, higher reliability, and significantly
enhanced data rate. Emphasizing on the fact that these devices
have limited capabilities and might be in inaccessible places,
which make battery replacement or recharging a challenging
task, energy-efficient solutions should be developed to ensure
uninterrupted and seamless wireless communications for power-
limited IoT devices. In this paper, we consider the integration of
long-range (LoRa) modulation into backscatter communications
(BackCom), and we develop a mathematical framework in order
to investigate the error rate performance of the considered system
model. In particular, we derive novel exact and approximated
closed-form expressions for the symbol error rate (SER), under
the assumption of canceled radio-frequency (RF) interference.
The obtained analytical results, corroborated by numerical results,
confirm the advantages of integrating LoRa into BackCom system
as a low-complex technique in order to extend the transmission
distance in power-limited backscatter devices.

Index Terms—Backscatter communications, Deep Learning,
IoT, LoRa, performance analysis.

I. INTRODUCTION

With the evolution of advanced haptic application, and
the emergence of five-senses wireless communications and
human-computer interfaces, the role of the Internet-of-Things
(IoT) paradigm becomes more vital in realizing such novel
applications in future sixth generation (6G) wireless networks
and beyond [1]. Despite their easy deployment, the short battery
lifetime of IoT devices still constitutes a major design challenge,
which requires a paradigm shift towards the development of the
next generation green communication architecture. Backscatter
communications (BackCom) have recently emerged as a new
communications paradigm for low-power wireless networks.
This approach is based on the concept that a transmitter sends
data to its receiver by backscattering wireless signals, e.g.,
Wi-Fi signals [2]. BackCom promises to be an extremely low-
power, cheaper, and simpler alternative to active low-power
technologies. This is motivated by the fact that BackCom
systems don’t require expensive radio analog components,
such as RF oscillators, crystals, and decoupling capacitors [3]].
Although BackCom systems are promising candidates for IoT
networks, they suffer from several drawbacks, including low

data rate, short-range communications, and dependence on the
dynamics of wireless signals.

In this regards, low power wide area network (LPWAN)
technologies have been identified as the underlying networks
for IoT applications. This is attributed to their attractive features,
including wide-range coverage, long battery life, and low
data rates, that fit well in the context of low power IoT
networks [4–7]. Long Range (LoRa), a branch of LPWAN is an
emerging technology for low-power wireless communications,
that operates in a non-licensed sub-GHz band with the aim to
realize long-range communication, rendering it an enabler for
BackCom.

LoRa-enabled BackCom has been recently proposed as an
efficient mechanism to overcome short-range transmission
limitations experienced in conventional BackCom systems. It
is worthy to note that in conventional BackCom networks,
the communication distance is limited to few meters. On
the other hand, according to recent experimental studies [8–
13], it was demonstrated that LoRa-enabled BackCom can
enjoy a coverage of hundreds of meters, if not kilometers. In
particular, in order to strike a balance between transmission
range and throughput, the authors in [9] proposed a design
for a low-power backscatter tag that piggybacks its symbols
over LoRa transmission. In [10], the authors presented a
wide-area backscatter system that is compatible with LoRa
hardware to achieve reliable coverage across a 309 m2

room. Ambuj and Carlos in [11] proposed LoRea with the
purpose to improve the reliability of weak backscatter links to
achieve an increased transmission range. PLoRa, an ambient
backscatter design, was presented in [12] to enable long-
range wireless communication by leveraging an ambient LoRa
signal. To achieve long-range communication, employing a CSS
modulation scheme, a modulator design that can backscatter
different chirps was presented in [8]. In [13], a room-level
localization technique was proposed to locate LoRa backscatter
devices by exploiting the low-cost, low-power and long-range
features of the underlying system. It should be highlighted
that these contributions depend solely on experimental studies,
and hence, lack a solid mathematical foundation, which is
a necessity for system improvement purposes, and in order
to allow better understanding to the integration of LoRa into
BackCom systems.

In this paper, consider the integration of LoRa into Back-
Com systems, in which we extensively study the error rate
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performance of the underlying system model. To the best of the
authors’ knowledge, such a framework has not been reported
in the open literature yet.

The main contributions of this work are summarized as
follows:

• We propose a thorough mathematical framework for the
investigation of LoRa-enabled BackCom system, in which
the backscattered signal is modeled as LoRa signal.

• Under the assumption of perfect cancellation of the radio
frequency (RF) source signal, we analyze the error rate
performance of LoRa-enabled BackCom, where we derive
a novel approximate for the bit error rate (BER), over
Rayleigh fading channels.

The rest of the paper is organized as follows: the considered
system model is presented in Sec. II. Then, in Sec. III we
present the correlator-based LoRa detector. Sec. IV presents
the performance analysis of the considered system. Numerical
and simulation results and discussions are presented in Sec. V.
The paper is concluded in Sec. VI.

II. SYSTEM MODEL

In this work, we consider an uplink LoRa-BackCom where
a passive tag, empowered by an RF source (S), communicates
with a receiver, as illustrated in Fig. 1. In particular, the
RF source is assumed to be a unipolar signal generator,
that generates single-tone unit-amplitude signals dedicated
for BackCom purposes. The backscatter device operates on
LoRa CSS modulation, in which chirp pulses are used to
modulate the transmitted signals [14]. The achievable data
rate of LoRa is determined by the spreading facor (SF),
which specifies the number of bits transmitted in each LoRa
symbol, SF = 6, 7, · · · , 12 [15]. It should be noted that, the
communication protocol and the system architecture of LoRa
is defined by LoRaWAN, where LoRa defines the physical
layer [15].

Now consider a narrow band system with center fequency
fc and bandwidth B, the passband single-tone signal from S
can be expressed as

S(t) = s(t)ej(2πfct+ψc), (1)

where s(t) denotes the complex baseband signal representation
of S(t), and ψc represents the initial phase. The received signal
at the tag can be expressed as

y1(t) = g1S(t), (2)

where g1 is complex Gaussian channel coefficient between the
RF source and the tag. The tag utilizes the received signal from
S and performs LoRa modulation. Hence, the backscattered
signal from the tag can be expressed as

c(t) = ρb(t)y1(t)e
j(2πfLoRa−ψst), (3)

where ρ is the tag reflection coefficient, fLoRa represents
the variable frequency corresponding to the baseband LoRa
modulation, ψst is the phase offset between S and tag and
b(t) is the complex baseband LoRa waveform with equivalent
discrete-time baseband signal given as [14–16]

bk[n] = e
j2π

(
n2

2N +( k
N − 1

2 )
)
, (4)

Fig. 1: LoRa-Enhanced BackCom System Model.

where N = 2SF is the total number of LoRa samples, n =
0, 1, 2, · · · , (N − 1) is the sample index.

The backscattered signal is then transmitted to the LoRa
receiver. Therefore the LoRa receiver receives a superposition
of the RF source signal S(t) and tag signal c(t) which can be
expressed as

yr(t) = g2c(t) + g0S(t) + zr(t), (5)

where g2 denotes the complex Gaussian channel coefficient
between the tag and the reader with zero mean and unit
variance, and zr(t) is the complex additive white Gaussian
noise (AWGN) CN(0, σ2) with σ2 = N0

2 , and N0 is the single-
sided noise power spectral density.

Hence, the signal to interference plus noise ratio (SINR) can
be expressed as

γ =
Es

N ·N0 + σ2
i

. (6)

where Es depicts the LoRa symbol energy, and σ2
i is the RF

interference power.

III. CORRELATOR-BASED DETECTOR

Given that the backscattered signal is much weaker than
the RF source signal, such interference can cause a severe
degradation to the system performance. Inspired by the idea
of direct link interference cancellation adopted in [10, 17],
we aim to eliminate the effect of the RF source interference
by introducing a small fixed frequency offset ∆f to the
backscattered LoRa signal. This will consequently transform
the single-tone signal S(t) into an out-of-band interference,
that can be filtered by a band-pass filter [10]. Subsequently,
the backscattered LoRa signal will be centered at ∆f + fLoRa.
Therefore by inserting (3) and (4) into (5), and assuming a
unit amplitude single-tone signal, the discrete-time received
signal by the LoRa receiver can be rewritten as

yr[n] = ρg1g2e
j2π

(
n2

2N +( k
N − 1

2 )
)
+ zr[n]. (7)

Furthermore, with the RF source interference removed at
the receiver, the SNR can therefore be expressed as

γ =
Es

N ·N0
. (8)

Considering that the detection of LoRa signals relies on
the orthogonality between the basis functions, a correlator can
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be exploited to quantify the correlation between the received
LoRa signal and the N basis functions [16]. Hence, the output
of the correlator to detect the kth symbol can be obtained as
follows

N−1∑
n=0

yr [n]x
∗
i [n] =

{√
ϱEs + ϕi, i = k

ϕi, i ̸= k
, (9)

where x∗i [n] is the complex conjugate of the ith basis function,√
ϱ = |g1| |g2|, and ϕi depicts the AWGN. In a non-coherent

receiver, received LoRa symbols can be detected relying on
an energy detector, in which the index of the detected symbol
can be evaluated as

k̃ = arg max
i

(∣∣∣δk,i√ϱEs + ϕi

∣∣∣) , (10)

where δk,i = 1 when i = k and 0, otherwise. Let τi = |ϕi|,

τi = |zr[n]| . (11)

The computational complexity of (10) is O(N2) [14].
For simulation and application purposes, a discrete Fourier
transform (DFT) based LoRa demodulation chain can be used
to perform the demodulation [14]. This is an equivalent and
low-complexity method with a computational complexity of
O(N logN).

IV. PERFORMANCE ANALYSIS

In this section, we present the error rate performance analysis
of LoRa-enabled BackCom system.

A. Exact Error Rate Performance Analysis of LoRa-enabled
BackCom

The probability that a symbol k is erroneously received i.e.,
i ̸= k can be evaluated as

Pe|ϱ = Pr
[

max
i,i ̸=k

(τi) > βk|ϱ

]
, (12)

where βk =
∣∣√ϱPr + ϕk

∣∣ with ϕk = ϕi

N−1 . From (12), it can
be noticed that τi is a Rayleigh random variable. Therefore, the
cumulative distribution function (CDF) of τi can be expressed
as

Fτi(x) = 1− exp
[
− x2

2σ2

]
. (13)

On the other hand, τ = max
i,i ̸=k

(τi) depicts the maximum of

(N − 1) i.i.d. Rayleigh random variables, and hence its CDF
can be given as [16]

Fτ(x) =

[
1− exp

[
− x2

2σ2

]]N−1

. (14)

Similarly, βk follows the Rician distribution with a joint
probability distribution function (PDF) given by

fβk
(x, ϱ) =

x

σ2
exp

[
−x

2 + ϱEs
2σ2

]
I0

(
x
√
ϱEs
σ2

)
·Ψ(ϱ),

(15)
where I0(·) is the zeroth order modified Bessel function of the
first kind. Given that

√
ϱ follows a double Rayleigh distribution,

its normalized channel power can be expressed as [18, 19]

Ψ(ϱ) = K0(2ϱ) (16)

where K0(·) is the zeroth order modified Bessel function of
the Second kind. By leveraging (15) and (16), the average
symbol error rate (SER) of a LoRa symbol in the underlying
system model can be evaluated as

Pe|ϱ =

∫ ∞

0

∫ ∞

0

[
1−

[
1− exp

[
− x2

2σ2

]]N−1
]
fβk

(x, ϱ)dxdϱ.

(17)
Exploiting the binomial expansion theorem, the SER expression
in (17) can be rewritten as

Pe|ϱ =

N−1∑
i=1

(−1)
i+1

(
N − 1

i

)
∫ ∞

0

∫ ∞

0

[
exp

[
− x2i

2σ2

]]
fβk|ϱ(x, ϱ)dxdϱ.

(18)
By substituting (15) in (18), the conditional SER can be
expressed as

Pe|ϱ =

N−1∑
i=1

(−1)
i+1

(
N − 1

i

)∫ ∞

0

[∫ ∞

0

x

σ2

exp
[
−x

2(i+ 1) + ϱEs
2σ2

]
I0

(
x
√
ϱEs
σ2

)
dx

]
·Ψ(ϱ)dϱ,

(19)
Evaluating the inner integral with respect to x, the conditional
SER can be evaluated to

Pe|ϱ =

N−1∑
i=1

(−1)i+1

i+ 1

(
N − 1

i

)∫ ∞

0

exp
[
− iϱγN

(i+ 1)

]
×Ψ(ϱ)dϱ,

(20)
where γ was defined in (8). Using the integral table [20],∫ ∞

0

e−ΥxK0 (Cx) dx =
arccos (Υ/C)√

c2 −Υ2
, (21)

where C = 2, and Υ = i
i+1γN . Hence, the symbol error rate

can be expressed as

Pe|ϱ =

N−1∑
i=1

(−1)i+1

i+ 1

(
N − 1

i

)
· arccos (Υ/C)√

c2 −Υ2
. (22)

Assuming equiprobable symbols, and given that SF > 2, the
average bit error (BER) is given as

Pb =
2SF−1

N − 1
· Pe ≈ 0.5 · Pe. (23)

B. Approximate Analysis of LoRa-enabled BackCom System

At high SF values, the binomial coefficient in (22) cannot
be accurately evaluated using available simulation platforms,
e.g., Matlab, Mathematica, MapleSoft, etc. Therefore, in
this subsection, we derive an approximated, yet, accurate,
expression for the BER of LoRa-enabled BackCom system.
At high SNR values, the distribution of τ in (14) can be
approximated as a Gaussian distribution with CDF represented
as [39]

Fτ (x) =
1√
2πσ2

τ

exp

[
− (x− µτ )

2

2σ2
τ

]
, (24)
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where µτ and σ2
τ are the mean and variance of τ respectively,

given by [20]

µτ =
(
µ2
λ − σ2

λ/2
)1/4

σ2
τ = µλ −

(
µ2
λ − σ2

λ/2
)1/2

,
(25)

with µλ and σ2
λ obtained as

µλ = 2σ2 ·
m∑
i=1

1

i
= 2σ2 ·Hm

σ2
λ = 4σ4 ·

m∑
i=1

1

i2
≃ 4σ4 · π

2

6
,

(26)

where m = N − 1 and Hm =
∑m
i=1

1
i .

Furthermore, the PDF of βk can be accurately approximated
as a Gaussian random variable with PDF represented as

fβk|ϱ(x, ϱ) =
1√
2πσ2

exp

[
−
(
x−

√
ϱEs

)
2σ2

]
·Ψ(ϱ), (27)

Now let α = τ − βk, the average BER can be expressed as

Pb = 0.5× Pe|ϱ

= 0.5× Pr (α > 0) ,
(28)

Hence, the average BER can be expressed as

Pb = 0.5× 1√
2πσ2

α

∫ ∞

0

∫ ∞

0

exp

[
− (x− µα)

2

2σ2
α

]
·Ψ(ϱ)dxdϱ,

(29)
where µα = µτ −

√
ϱEs and σ2

α = σ2
τ + σ2. By leveraging

the definition of the Gaussian Q-function, the expression in
(29) can be rewritten as

Pb = 0.5×
∫ ∞

0

Q

(
−µα
σα

)
·Ψ(ϱ)dϱ

= 0.5×
∫ ∞

0

Q

(√
ϱEs − µτ√
σ2
τ + σ2

)
·Ψ(ϱ)dϱ,

(30)

Hence, by inserting (25) into (30), and utilizing (16), the
approximate BER expression can be expressed as

Pb = 0.5×
∫ ∞

0

Q


√
ϱγN −

[
H2
m − π2

12

]0.25
√
Hm −

√
H2
m − π2

12 + 0.5

 ·Ψ(ϱ)dϱ.

(31)
It is demonstrated in [16] that the integral in (31) can be

simplified to

Pb = 0.5×
∫ ∞

0

Q
(
1.28

√
ϱγ ·N − 1.28

√
SF + 0.4

)
·Ψ(ϱ)dϱ.

(32)
Due to the mathematical intractability of (32), we resort

to the approximation for the PDF of ϱ given by [21], its
normalized channel power can be expressed as

Ψ(ϱ) = ϱ−0.25e−2ϱ. (33)

Furthermore, we utilize the generalized Gauss-Laguerre Quadra-
ture (GLQ) approach,∫ ∞

0

xae−xf(x)dx ≈
z∑
q=1

uqf(yq), (34)

where uq and yq are the respective weights and roots of the
generalized GLQ [43]. Hence, the approximated expression of
the average BER can be written as

Pb = 0.5

z∑
q=1

uqy
−1.25
q e−yqQ

(
1.28

√
yqγ ·N − 1.28

√
SF + 0.4

)
.

(35)
V. RESULTS AND DISCUSSIONS

In this section, we present the numerical results, in order
to corroborate the accuracy of the derived expressions in
Section IV. Due to the precision limitations in mathematical
platforms, e.g., Matlab, Mathematica, and MapleSoft, the
accuracy of the derived expression in (23) will be validated
through numerical results, for SF = 3, and 5. Furthermore, we
will exploit the expression in (23) in order to corroborate the
accuracy of the considered approximation in (35). Therefore,
Fig. 2 plots the analytical BER expressions in (23) and (35),
for SF = 3, and 5, and rho=1. The perfect agreement between
the numerical and the exact analytical results, for all considered
SF values and over the entire SNR range, confirms the validity
of the exact SER expression derived in (23).

Furthermore, it can be noticed that the approximation utilized
to generate (35) is tight, as it can be noticed from Fig. 3
that the BER difference between the exact performance and
approximated one in (35) is negligible. This validates the
correctness of the presented analytical framework in Sec. IV.
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Fig. 2: The BER of LoRa-enabled BackCom, SF = 3, 5, and
ρ = 1.

In Fig. 4, we compare the approximated SER of the
underlying system model, with the corresponding simulation
results, while considering more practical SF value, e.g., SF
= 7, 8, and 9. It can be observed from Fig. 3 that the
approximated analysis perfectly matches the simulation ones for
the considered SF values and over the entire SNR range. This
further confirms the validity of the proposed approximated
analytical framework under the assumption of practical SF
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Fig. 3: Approximated SER and simulation results of Lora-
enabled BackCom, SF = 7, 8, and 9, ρ =1.
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Fig. 4: LoRa-enabled BackCom BER performance vs Tag
reflection coefficient, ρ = 0, 0.1, · · · , 1 with dst = dtr =
200m.

values, and therefore, it can be reliably utilized to quantify the
error rate performance of the considered system model.

With the aim to obtain more insights into the error rate
performance of LoRa-enabled BackCom systems, we study the
effect of the link distances on the performance of such systems.
Without loss of generality, we assume that the transmission
is performed over the 868 MHz band, with wavelength λ =
34.54 cm. Furthermore, we consider that the transmit power
of S is Ps = 20 dBm, and the antenna gains of S, tag, and
the LoRa receiver are set as Gs = 8 dB, Gr = 2.2 dB, and
Gr = 2.15 dB, respectively. Therefore, using Friis free space
propagation model [22], the received power of the backscattered
signal at the LoRa receiver can be computed as

Prt = ρPsGsG
2
tGrK

2d−ast d
−a
tr , (36)

where a = 2 is the free-space pathloss exponent [23], dst is
the distance between S and the tag, and dtr is the distance
between the tag and the LoRa receiver. Hence, the average
receive SNR in dB can be expressed as

γ = Prt − PRX , (37)

where PRX is the adaptive LoRa receiver sensitivity [24].
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Fig. 5: LoRa-backscatter BER performance vs Distance be-
tween tag and receiver dtr = 200, 400, · · · , 2000m with ρ = 1.

Leveraging (37), the SER performance of the system
is further evaluated for a wider range of backscatter tag
attenuation coefficient, as shown in Fig. 4. It can be observed
from Fig. 4 that ρ has a critical impact on the SER performance
of LoRa-enabled BackCom systems. For example, as ρ goes
from 0.1 to 1, the SER for SF = 12 drops from 4.2 × 10−3

to approximately 5.4× 10−4. This stimulates the importance
of designing efficient tags that are capable of reflecting the
maximum of the received power.

Fig. 5 shows the SER performance of the underlying system
model versus the distance between the tag and the LoRa
receiver. The results in Fig. 5 demonstrates the advantages
of leveraging LoRa in BackCom systems, in order to extend
the communication range. As reported in the literature, the
typical communication range in BackCom is limited to few
meters, and sometimes to less than 1 m. However, when
integrating LoRa, it can be shown, as depicted in Fig. 5 that
the communication distance can be extended to much wider
ranges. In particular, it can be observed that, for SF = 12
approximately an SER of 10−4 can be achieved when the
distance between the tag and reader equals to 1600 m, and the
carrier emitter is placed 10m from the tag. This indicates that
such an integration between LoRa and BackCom could be a
paradigm shift towards realizing reliable, long distance, energy
efficient wireless communications for resources-constrained
IoT networks.

VI. CONCLUSIONS

In this paper, we have evaluated the error rate performance of
LoRa-enabled BackCom system over Rayleigh fading channels.
In particular, we derived accurate exact and approximated
expressions for the error rate, and the accuracy of the analytical
framework is validated through numerical results. When
parameters are varied, the obtained results show that the
system SER performance increases with increasing SNR. Also,
we studied the impact of the tag reflection coefficient on
the system performance, and it was demonstrated that, the
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SER performance of the considered system model improves
with increasing the tag reflection coefficient. It is further
concluded that leveraging LoRa in BackCom systems can
offer an improved performance when the transmission distance
goes beyond the tens of meters.
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