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This paper is concerned with providing a unified approach to
analyzing the performance of cognitive radio networks.

Large-scale (Shadowing) Effect

Lognormal, Inverse-Gaussian, Gamma.

Small-scale (Multipath) Effect

Conventional: Rayleigh, Nakagami-m,

Weibull-m, Rician.

Generalized: ↵� µ, � µ, ⌘ � µ.
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Introductory Background | Composite Fading Channels (1)

Performance analysis over multipath or shadowing scenarios alone is
relatively tractable. However, extending the analysis to composite
fading channels is rather cumbersome and intractable.

Examples:
Nakagami-m/Lognormal (NL) model (no closed-form)
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2�mm

�(m)
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� µ Shadowed model [1] (complicated)
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[1] J. F. Paris, “Statistical Characterization of k-m Shadowed Fading,” IEEE Trans. Veh.
Technol., vol. 63, no. 2, pp. 518–526, Feb. 2014.
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Various alternatives proposed, for examples:

The K - and K

G

- distributions:
Replaced the Lognormal with Gamma and integrate.

The RIGD and G -distribution:
Replaced the Lognormal with Inverse-Gaussian (IG) and
integrate.

Still complex and not a general solution.
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Another alternative proposed by Atapattu et al. [2]
Several models were approximated using the mixture Gamma
(MG) distribution via gauss-quadrature approximations.
Approximates: NL, K , K

G

, ⌘ � µ, � µ, Hoyt, and
Nakagami-m.

The pdf is given by

f�(�) =
KX

i=1

↵
i

�
x

�

�
i

�1
exp(

⇣
i

x

�
)

Pros: Very tractable, arbitrarily accurate.
Cons: Still not generalizable to all fading models.

[2] S. Atapattu, C. Tellambura, and H. Jiang, “A Mixture Gamma Distribution to Model the
SNR of Wireless Channels,” IEEE Trans. Wireless Commun., vol. 10, no. 12, pp. 4193–4203,
Dec. 2011.
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Introductory Background | Energy Detection Performance

Cognitive radios came as a viable solution to mitigate the
spectrum scarcity.
Spectrum sensing techniques:

Energy Detector (ED).
Others: Matched Filter, cyclostationarity or feature detection .

Here we are concerned with the performance of the ED in
generalized and composite fading channels.
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Approaches in literature:
A semi-analytic solution for the NL was proposed.
The K - and K

G

- distribution is widely utilized to study the ED
performance over RL channels; yet analytically cumbersome.
The Mixture of Gaussian (MoG) distribution [3] was utilized to
study the ED performance.

Likewise, here we utilize the mixture distributions approach, i.e.
We utilize the MG distribution to study the ED performance.

[3] O. Alhussein, O. Selim, T. Assaf, S. Muhaidat, J. Liang, and G. K. Karagiannidis, “A
Generalized Mixture of Gaussians Model for Fading Channels,” in IEEE Conf. Vehicul.
Tech., Glasgow, 2015.
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Square-Law Combining
Square-Law Selection

Energy Detection Performance

Goal is to study the detection and false-alarm probabilities in
MG-based generalized and composite fading channels.
We consider square-law combining (SLC) and square-law
selection (SLS) diversity schemes.
Typical configuration:

H
0

: y
j

(t) = h

j

(t)
H

1

: y
j

(t) = h

j

(t) + v

j

(t) ,
(3)

This conditional detection and false-alarm probabilities:

P

d

= Q

u

(
p

2�
j

,
p
�
n

), (4)

P

f

=
�(u, �n

2

)

�(u)
, (5)

where u is the time-bandwidth product, �
n

is the ED threshold.
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Single-antenna Scenario (1)

Our generelized fading model is written as
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KX
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◆
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Consequently, the detection probability is computed as

P
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=
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Single-antenna Scenario (2)

Using Theorem 1 in [4], we obtain

P

d ,MG

=
KX

k=1

↵
k

�(�
k

)�(u, �n

2

)

�(u)⇣�k

k

+
KX

k=1

�
k

�1X

l=0

↵
k

�(�
k

)

��k

0

⇥
(�n

2

)
u

1

F
1

(l + 1, u + 1, �
n

/2

1+1

⇣
k

�0

)

u!( ⇣k�0
)
�
k

�l

(1 + ⇣
k

�0
)
l+1

exp(�n

2

)
, (8)

[4] P. Sofotasios, M. Valkama, T. Tsiftsis, Y. Brychkov, S. Freear, and G. Karagiannidis, “Analytic
solutions to a Marcum Q-function-based integral and application in energy detection of unknown signals
over multipath fading channels,” in IEEE Cogn. Radio Oriented Wireless Netw. and Commun.
(CROWNCOM), 2014, pp. 260–265.
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Square-Law Combining (1)

Under SLC, the received signals from each branch are
integrated, squared, and then summed up.
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LX
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. (9)

We need to obtain pdf of �⌃ in order to derive P

d ,⌃.

f

(2)
�⌃ =

ˆ �

0

f�1(x)f (� � x)dx =
KX

i=1

KX

j=1

↵
i

↵
j

�
0

�
i

+�j

⇥
ˆ �

0

x

�
i

�1

e

� ⇣
i

�0
x

(� � x)�j

�1

e

�
⇣
j

�0
(��x)

dx . (10)

12 / 20



Introduction
Contribution | Unified Energy Detection performance

Simulation Results
Conclusions and Q&A

Single-Antenna Scenario
Square-Law Combining
Square-Law Selection

Square-Law Combining (2)

Under SLC, the received signals from each branch are
integrated, squared, and then summed up.

�⌃ =
LX

l=1

�
l

. (11)

The pdf of �⌃ was derived
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Square-Law Combining
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Square-Law Combining (3)
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Note: This method works for higher diversity orders.
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Square-Law Combining (4)

Thus P

d ,⌃2 was derived as
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Square-Law Combining (5)
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Square-Law Selection (1)

Under SLS, the branch with the maximum �
j

is selected as
follows

�SLS = max
j=1,..,L

(�
j

) . (16)

Under H
0

, the false-alarm probability for the SLS scheme can
be expressed as

P

f ,SLS = 1 � Pr(�SLS < �
n

|H
0

) . (17)

Substituting (16) in (17), we obtain

P

f ,SLS = 1 � Pr(max(�
1

, �
2

, .., �
L

) < �
n

|H
0

) . (18)
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Square-Law Selection (2)

Accordingly, this translates to

P

f ,SLS = 1 � [1 � P

f

]L . (19)

Similarly, the unconditional probability of detection over the
AWGN channel is obtained by

P
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h
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(
p

2�
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,
p
�
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)
i
. (20)

Hence, averaging (20) over (7) yields the unconditional
probability of detection under the SLS scheme, P̄

d ,SLS, which
is given by

P̄

d ,SLS = 1 �
LY

j=1

[1 � P

d ,MG

] . (21)
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Simulation

(Left) depicts 1 � P

d

versus P

fa

(ROC) curves for different fading conditions
with no diversity. (Right) depicts the ROC curves over several scenarios of the
composite NL fading channel with SLC diversity scheme with L = 2.
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Conclusions

We proposed a unified framework for the performance analysis
of an energy detector in generalized and composite MG-based
fading channels.
Novel analytical expressions for the average detection
probability have been derived for both the single-antenna case
and the multiple-antenna case with SLC and SLS schemes.

Derived expressions are generalized in terms of fading
characterization and algebraically versatile.

Notes:
This paper can be found in the ArXiv.orgrepository
(arXiv:1510.05594).
An extended journal edition of the paper is found as an
early-access IEEE TVT transaction.
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