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via Trust Management

Manaf Bin-Yahya, Omar Alhussein, Member, IEEE, Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—Software-defined wireless sensor networks (SD-
WSNs) can be functionally affected by malicious sensor nodes
that perform arbitrary actions, e.g., message dropping or flood-
ing. The malicious nodes can degrade the availability of the
network due to in-band communications and the inherent lack
of secure channels in SDWSNs. In this paper, we design a hier-
archical trust management scheme for SDWSNs (namely TSW)
to detect potential threats inside SDWSNs while promoting node
cooperation and supporting decision making in the forwarding
process. TSW evaluates the trustworthiness of involved nodes and
enables the detection of malicious behavior at various levels of the
SDWSN architecture. We develop sensitive trust computational
models to detect several malicious attacks. Furthermore, we
propose separate trust scores and parameters for control and
data traffic, respectively, to enhance the detection performance
against attacks directed at the crucial traffic of the control
plane. Furthermore, we develop an acknowledgment-based trust
recording mechanism by exploiting some built-in SDN control
messages. To ensure the resilience and honesty of the trust scores,
a weighted averaging approach is adopted, and a reliability trust
metric is defined. Through extensive analyses and numerical
simulations, we demonstrate that TSW is efficient in detecting
malicious nodes that launch several communications and trust
management threats such as black-hole, selective forwarding,
denial of service, bad mouthing, and ON-OFF attacks.

Index Terms—WSN, IoT, Software-Defined WSN (SDWSN),
Security, Trust Management.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) paradigm has
gained considerable attention from academia and industry.
Wireless Sensor Networks (WSNs) are considered a key
enabler of the IoT paradigm [1]. In a WSN-enabled IoT en-
vironment, a large number of sensor devices are connected to
the Internet. Therefore, conventional architecture and solutions
for WSNs should be subjected to further research and intro-
spection [2]. WSNs are dynamic networks which encounter
several challenges due to potentially limited communication
range and resources, e.g., network management, QoS routing,
and security challenges [3], [4]. Software-Defined Networking
(SDN) is gaining prominence as an alternative architecture
to address the aforementioned challenges in WSNs for the
era of IoT [5]. The SDN is a centralized architecture that
separates the control plane from the data plane and introduces
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Fig. 1: Examples of SDWSNs communication threats.

programmability to the network elements in the data plane [6].
Introducing SDN to WSNs provides several benefits such
as flexible and centralized network management, efficient
routing, enhanced mobility and localization management, and
improved security [7], [8]. For routing, SDN makes the major
decisions through the controller in the control plane, thereby
rendering a more efficient use of power resources.

Furthermore, SDN can provide security solutions (e.g.,
routing isolation and obfuscation) while handling the hetero-
geneity, scalability, and limited resources of WSN for IoT
applications [9]. However, such a centralized architecture,
brought-forth by SDN, comes with new challenges, which
are mainly due to having non-dedicated channels for the
control plane. In SDWSNs, there is no secure channel due
to limited resources since the control plane uses in-band and
multi-hop communication [10]. By contrast, in other scenarios,
an SDN controller connects with devices through a secure
channel, e.g., Transport Layer Security (TLS)/Secure Sockets
Layer (SSL) based communication [11]. The robustness of
SDWSNs is heavily dependent on the control plane and the
intermediate nodes between the controller and the rest of
the network [12]. However, identifying the security issues of
SDWSNs has received little attention. Analyzing the attacks
and defense aspects in SDWSNs is highly essential at this
stage. In particular, SDWSNs have some unique properties,
which differ from typical distributed WSNs. These unique
properties range from the central controller to the inherited
SDN vulnerabilities.

Having insecure in-band and multi-hop communication be-
tween the controller and sensor nodes increases the security at-
tack surface, thereby making the network vulnerable to several
communication threats that affect the network availability [13].
Message dropping and flooding behaviors are examples of
communication threats as illustrated in Fig. 1. Crypto-based
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authorization and authentication techniques on their own are
insufficient in dealing with such threats [14].

Therefore, it is imperative to develop trust management
among the participating nodes to provide a secure reflection of
the network. Trust management aims to secure WSNs against
attacks launched by insider malicious nodes. It establishes trust
relationships among network nodes based on their experiences
with others [15]. Besides defending against communication
threats, trust management schemes need to be robust against
good/bad mouthing and ON-OFF attacks. In this paper, we
consider that all nodes (including malicious ones) are autho-
rized and authenticated, and we focus on trust management.

Extensive research efforts have been directed towards
designing trust management schemes for conventional
WSNs [16]–[21]. Recall that SDN enables network pro-
grammability via the controller node and provides a decou-
pled separation between control and data planes. Therefore,
trust management schemes for conventional WSNs cannot
be directly deployed for SDWSNs, and they do not harness
of the introduced centralized and programmable capabilities.
Moreover, due to the decoupled nature of SDWSNs (i.e.,
decoupled control and data planes), and due to the existence of
a single point of failure, the effect of some threats can become
aggravated, which calls for more careful consideration.

Only few works address trust-based routing and trust man-
agement for SDWSNs [22], [23]. An energy-efficient trust
management and routing mechanism (ETMRM) was proposed
in [23]. ETMRM utilizes the node’s trust score and residual
energy to detect malicious behavior and ensure secure yet
energy-efficient routing. The authors provide a flow-table
extension to achieve lightweight trust monitoring at the node
level. However, the inherent decoupled and hierarchical ar-
chitecture of SDWSNs is not fully considered. That is, the
aforementioned trust management scheme does not consider
a separation between the control and data planes which is
very crucial in such networks. Moreover, a trust management
scheme that addresses the several hierarchical levels of SD-
WSNs is not yet studied. Moreover, we provide a thorough
investigation and new careful design to trust evaluation mod-
els. See Sec. II-B for a more detailed discussion.

The goal of this paper is to secure SDWSNs from nodes
that behave maliciously to perform several attacks, e.g., black-
hole, selective forwarding, and DoS (new-flow [23]). While
considering the particular characteristics of SDWSNs, we
propose a trust management scheme for SDWSNs (namely,
TSW scheme). We address key design issues and provide
analysis of trust management for SDWSNs, including trust
recording (i.e., how and what information to record about
the nodes), trust evaluation (i.e., how to evaluate the trust
score of each node), and trust propagation (i.e., how trust
scores are aggregated at each architectural level). We want
to point out that a preliminary version of this paper appeared
in [24]. Specifically, the main contributions of this research
are summarized as follows:
• We propose a hierarchical trust management scheme in

which trustworthiness is evaluated at each level of the
SDWSN architecture. This enables the architecture to
have finer detection granularity and early response to

malicious behavior. Furthermore, to avoid biased trust
scores, trust metrics are computed from reliable scores
based on a weighted averaging approach with a defined
reliability trust metric.

• To address the decoupled nature of SDWSNs, we sep-
arate the computation of trust scores to control plane
and data plane traffic, respectively. The separation can
provide more critical treatment to the control plane.
Also, we utilize specific SDN-based control message
types to design an acknowledgment-based trust recording
mechanism, resulting in an enhanced detection rate of
control dropping attacks.

• We design trust evaluation models that have more sensi-
tivity to the change of abnormal behavior for an enhanced
detection time and accuracy. Moreover, we propose a new
Bayesian method with reward and penalty factors to in-
crease sensitivity to bad behavior. Furthermore, we design
a trust updating mechanism that can dynamically learn
from past trust evaluation by giving past bad behavior
more weight in the next time-window evaluation.

• Finally, through both theoretical analysis and exten-
sive numerical simulations, we show that our proposed
scheme provides robust and efficient trust management.

The remainder of this paper is organized as follows: A
review of related works is discussed in section II. In section III,
we introduce the system and communication threats models
and define the design goals. Then, we provide an overview of
TSW scheme in section IV. The details of the three phases
of the TSW scheme is provided in section V. Next, we
provide theoretical analysis and performance evaluation for
TSW scheme in sections VI and VII. Finally, we conclude
our paper in section VIII.

II. RELATED WORKS

A. WSN and Trust Management

Securing WSNs through reputation-based schemes is widely
proposed in the literature and has proven to be an effective
approach for guarding the network against several attacks [3],
[14], [15], [25]. Many research studies are proposed to build
trust-based schemes to secure WSNs. We discuss some of the
recently proposed schemes as follows. Jiang et al. proposed
a distributed trust model scheme [16]. In this scheme, com-
munication trust is determined through direct (subjective logic
framework) and indirect (trust chain) approaches. Data trust is
calculated based on the deviation between the received sensing
data from a certain node from the average of other nodes’
data in the same area. Energy trust is calculated based on
the residual energy of the node under the assumption that a
node knows its neighbors’ initial energy. Trust reliability and
familiarity are used to ensure the precision of recommendation
trust. Meng et al. proposed a trust-based scheme with traffic
sampling implemented with intrusion detection system (IDS)
for IoT-driven WSN [17]. A fixed or random sampling ap-
proach is used while considering the computational and energy
capability of a limited resources network with a high data
traffic rate. To detect malicious behaviors inside the network,
a Bayesian-based intrusion detection method is used in which
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all data flows are expected to be independent. Zhang et al.
proposed a trust evaluation approach for clustered WSNs based
on cloud model. The model takes into consideration multiple
factors [18]. The approach can be used to meet security re-
quirements according to WSN applications. However, this ap-
proach is constrained by the limited power resources of WSNs
with lower computational power and incompatible recording
approaches. Chen et al. proposed a trust management scheme
for IoT networks [19]. The scheme provides adaptive man-
agement that is capable of evaluating relationships among IoT
node owners to better assess social trust for those devices.
Three social trust metrics are presented, namely, a cooperative-
ness metric based on social ties, an honesty metric based on
node reliability, and a community-interest metric to assess co-
relationships. Li et al. propose a lightweight and dependable
trust management system (LDTS) [20]. In this hierarchical
scheme, there are different levels of trust evaluation. The trust
scores are calculated based on self-evaluation and cluster head
(CH) recommendation at the cluster member level. Moreover,
each CH evaluates other CHs while introducing the base
station as a source of indirect trust evaluation. Sahoo et al.
proposed a bio-inspired trust management scheme to provide
a secure clustering approach for WSNs [21]. The trust scheme
uses a honey bee mating algorithm for trust-based clustering.
This approach avoids selecting a malicious node as a CH
by creating a list of the nominee nodes associated with trust
scores. The algorithm selects the appropriate CH according to
this list.

Distributed non-SDN-based trust management solutions do
not conflict with SDWSNs. However, such approaches do not
naturally consider the decoupled nature of the network, nor
can they harness the introduced centralized and programmable
capabilities. For example, we develop an acknowledgment-
based trust recording mechanism that is compatible with SDN-
based control message types.

B. SDWSN and Trust Management

Research on trust management schemes for SDWSNs is
still in a nascent stage [22], [23]. Vishnu et al. proposed a
trust-based and QoS-aware routing mechanism for SDWSNs
(namely SeC-SDWSN) [22]. The authors define a three-tier
architecture of clusters, switches, and SDN controllers. Sen-
sors are clustered using a secure hash tree-based clustering
algorithm. Then, an encryption approach is proposed for data
security. After that, a fuzzy weighted technique is used to
transmit data to the appropriate switch.

A more relevant work was proposed by Wang et al. where
energy-efficient trust management and routing mechanism
(ETMRM). ETMRM considers both the node’s trust score
and residual energy to detect malicious behavior and ensure
secure routing [23]. The authors provide a flow table extension
to achieve lightweight trust monitoring at the node level.
A Bayesian model is used as a trust computational model.
In addition, trust scores are collected from sensor nodes at
the controller level to detect and isolate malicious nodes
in a centralized manner. ETMRM’s trust scheme does not
consider separating data and control traffic evaluation which is

Fig. 2: SDWSN system model.

an important inherent property when considering SDN-based
networks. Moreover, a hierarchical scheme that addresses the
inherent architectural levels in SDWSNs is not considered.

To this end, we consider and address several research gaps
and design factors pertinent to the architecture and properties
of SDWSNs which have not been addressed yet. We design a
hierarchical trust management scheme on the node, CH, and
controller levels. Moreover, we design a trust management
scheme that treats the control and data planes separately, which
by design can provide higher sensitivity and protection to the
crucial traffic of the control channels. Furthermore, we design
trust scores that account and preserve historical behavior in
the trust updating process. Also, we improve on the existing
trust computational models by introducing a new Bayesian
factor model with penalty and reward factors to increase the
sensitivity to bad behavior, thereby improving the detection
rate. We also make sure our trust management scheme is robust
to bad/good mouthing and ON-OFF behavior.

III. PROBLEM FORMULATION

In this section, we present the SDWSN system model as
well as network and security assumptions. Then, we describe
several potential threats in SDWSNs. Finally, we discuss the
design goals of the TSW scheme.

A. System Model

The system model consists of several components, namely
sensor nodes, CHs, sink nodes, and the SDN controller, as
shown in Fig. 2. Three hierarchical levels exist in this model,
namely the node level, the CH level, and the controller
level. We assume that network nodes are deployed randomly
and are homogeneous (i.e., every sensor node has the same
communication range). Also, each node in the network has a
fixed position. Each sensor node must have at least two one-
hop neighbors in its communication range. Thus, the network
can be very dense. Nodes in the same communication range
can detect, communicate, and overhear each other. For each
cluster, the CH aggregates and relays messages inside the
network. The controller has a global view of the network. It
has a high computational capacity and unlimited communica-
tion resources compared to other components in the system.
The controller receives statistical updates from the underlying
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network components to build comprehensive network maps.
The controller can provide several services efficiently, such
as routing, network management, and security based on these
maps. Each node has a flow table, and the SDN controller is
responsible for updating the flow rules. The flow table consists
of matching rules, actions, and statistics fields.

B. Security Assumptions

We assume that each node can be identified by a unique
legal ID. The network applies defense mechanisms to deal
with replay, Sybil, and identity-based attacks [26]. Every node
(including malicious nodes) is authorized and authenticated.
The communication inside the SDWSN is encrypted using a
shared key. Thus, unauthorized nodes cannot eavesdrop nor
be an active part of the network. Also, every network node
has another shared key with the SDN controller. Thus, no one
is able to modify the message content between a component
and the controller, such as to forge statistical updates, flow
rule control messages, or trust update messages. Moreover,
we assume that sink nodes and the controller are fully trusted.
Sensor nodes and CHs can be malicious. We assume that there
is no attack at the initial network setup.

C. Threat Models

SDWSNs face several security challenges and vulnerabil-
ities due to their open environment and limited resources
[7]. Thus, sensor nodes can be compromised physically or
remotely and become malicious by an outsider attacker. Also,
some nodes, such as selfish nodes, can act maliciously to
preserve their limited resources, such as energy.

1) Black-hole Attack: A malicious node drops all received
messages received from its neighbors.

2) Selective Forwarding Attack: A malicious node drops
received messages partially either at random or deliberately. A
malicious node can launch this attack to block certain types of
messages or certain node’s messages, or degrade the network’s
message delivery ratio. On the other hand, if a selfish node
launches the attack, dropped messages can be random.

Fig. 1 demonstrates an aggravated effect of dropping mes-
sages in SDWSNs. The bottom (blue) attacker drops the
received control messages from/to the bottom part of the
network, isolating it from connecting with the controller. In
addition, both black-hole and selective forwarding attacks can
be launched on the data plane.

3) DoS and New-flow Attacks: The new-flow attack is a
flooding DoS attack that targets the control plane of SDN-
based networks. However, in SDWSNs, this attack can target
both the control and data plane due to the large number of
packet-in messages, which can degrade the network’s avail-
ability. For example, in Fig. 1, the upper (red) malicious node
floods a node in the control plane with packet-in messages.
The control path starting from this node will be degraded in
terms of bandwidth, overhead, and nodes’ energy. As a result,
the availability of the upper (red) part of the network will be
affected. This attack can also be directed at the availability of
the controller.

4) ON-OFF Attack: A malicious node launches the com-
munication attacks irregularly. In so doing, a malicious node
attempts to deceive trustworthiness metrics by behaving nor-
mally following a bad behavior.

5) Good/Bad Mouthing Attack: A malicious node attempts
to falsify the aggregated trust for a particular node by provid-
ing biased scores. A malicious node sends a low trust score for
a non-malicious node in a bad mouthing attack, which would
affect the non-malicious node’s trustworthiness at higher levels
in the SDWSN. On the other hand, in a good mouthing attack,
malicious nodes try to raise the trust of other malicious nodes
by sending good feedback. Potentially, a number of malicious
nodes can also launch a collaborative mouthing attack.

D. Design Goals
In TSW, we aim to provide a security mechanism to defend

against the aforementioned attacks. The main design goals of
this work are listed below:

Simplicity and efficiency: The trust scheme must have
lightweight operations due to the limited resources of sensor
devices. At the same time, the trust scheme needs to accu-
rately detect and isolate malicious nodes from the network
services. It can be challenging to develop lightweight models
that are sufficiently sensitive to malicious behavior. Trust
computational models are to ensure that the trustworthiness
of a node must fall quickly following bad behavior yet rise
slowly following good behavior.

Compatibility with SDWSNs: There are three hierarchical
levels in SDWSN, thereby the need for a hierarchical trust
management scheme. And, there should be separate data and
control trust scores. Besides, it is instructive to utilize built-in
SDN messages for the recording phase, while statistical infor-
mation can be collected from existing flow-table constructs.

Dynamicity and timeliness: The computed trust score for
a particular node at each level must be dynamic. Moreover,
node reliability must be reflected correctly in the change of
its trust score over time. Furthermore, the past behavior of a
node needs to be considered when continuously updating its
respective trust score.

Resilience and honesty: Unreliable scores need to be
avoided from the trust evaluation process in higher levels to
reduce the effect of biased scores.

IV. TSW SCHEME OVERVIEW

Fig. 3 presents an overview of the TSW scheme which
consists of three main phases, namely recording, evaluation,
and propagation. Trust parameters (in subsection V-A) are
collected and recorded in the recording phase through direct
interaction, overhearing, and ACK-based approaches. Next,
based on these parameters, trust metrics are computed through
trust computational models (in subsection V-B). The trust
scores are updated with the consideration of past scores (in
subsection V-B3), and integrated together throughout every
time window (∆t) (in subsection V-B4). After that, the
computed trust scores are aggregated at the upper layers of
the SDN architecture (in subsection V-C2), where the trust
reliability is provided, and biased scores are excluded in the
computation of the aggregated trust score (in subsection V-C1).
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Fig. 3: TSW scheme overview.

Table I: Table of Notations

Tx,y Trust score computed by node x for node y.
TMetric Trust metric defined in section IV-A.
TType Trust score computed through integration (V-B4).
Ny Number of messages initiated by node y.
N+

y Number of successful messages forwarded by node y.
N−

y Number of unsuccessful messages forwarded by node y
thH Trust score threshold of being trusted (T ≥ thH ).
thL Trust score threshold of being untrusted (T ≤ thL).
ηmax Maximum number of messages that a node can initiate.
ηmin Minimum number of messages that a node can initiate.
ATavg Average of received trust scores.
AT Aggregated trust score.
R Score reliability.
T rel Node reliability.

A. Trust Metrics

In TSW scheme, we define six trust metrics to evaluate the
trustworthiness of nodes. These metrics are computed based
on the sending and forwarding parameters from the recording
phase V-A. The trustworthiness evaluation is conducted to
determine the participation and cooperation of every node in
the forwarding process. These metrics can differ based on the
application of trust management [14]. Our scheme aims to
secure network communications. We assume that node x is
the evaluating node and node y is the evaluated node.

(1) Forwarding trust: Denote the forwarding trust metric for
data traffic and control traffic by TDFx,y and TCFx,y , respectively.
These trust metrics evaluate how a node cooperates in the
forwarding process of data and control messages, respectively.
Such metrics are needed to detect message dropping attacks.
They are computed by considering successful and unsuccess-
ful experiences of participation through forwarding counters
(subsection V-A1).

(2) Sending-rate trust: Denote the sending-rate trust met-
ric for data traffic and control traffic by TDSx,y and TCSx,y ,
respectively. These trust metrics evaluate whether or not the
sending rate of data and control messages of a node is within
the limit, respectively. Such metrics are needed to detect
flooding attacks. If the number of initiated messages exceeds
the maximum limit, the trust score must decrease to penalize

node y. However, TCSx,y also has a lower limit as the number of
expected control messages can be determined (section V-B2).
TDSx,y and TCSx,y are computed based on sending rate parameters
(section V-A2).

(3) New-flow trust: This trust metric, TNFx,y , evaluates if the
sending rate of packet-in control messages from a node is
under the maximum limit. The packet-in messages are crucial
because they can be used to launch a DoS attack in the SDN-
based architecture. If the number of initiated messages exceeds
the limit, the trust score must decrease. Similar to TCSx,y and
TDSx,y , the new-flow trust metric can computed through direct
interaction and overhearing approaches.

(4) Node reliability: We need to determine a node trustwor-
thiness when it sends or propagates trust scores to the upper
layer. That is, we need a metric to defend against mouthing
attacks which can be computed by CHs and the controller.
The node reliability metric, T rely , is determined based on the
aggregated trust scores from node y about its neighbors. A
node becomes trusted when it provides reliable trust scores
(subsection V-C1).

B. TSW Architectural Levels

Next, we describe the trust management process at every
SDWSN architectural level, namely node, CH, and controller
levels.

1) Node Level: Algorithm 1 illustrates the trust manage-
ment process at the node level. Each node builds a record for
its neighbors based on the recording approaches. The recorded
parameters (counters) are used in the computation of trust
metrics. These trust metrics are combined to build specific
direct trust scores. Thus, for each time window ∆t, nodes
store the calculated trust scores for future use in the trust
updating process. As well, these scores are sent to the upper
level. According to [16], ∆t should not be very small because
this would mean frequent trust computation and updating,
which would lead to power consumption. Furthermore, the
trust evaluation will be affected by non-malicious causes such
as congestion and delay. On the other hand, the trust score
should not be computed over a very long period. As a result,
the trust evaluation would not reflect the most current state of
the nodes’ trustworthiness.

2) CH Level: Algorithm 2 illustrates the trust management
process at the CH level. At this level, CHs evaluate the
trust of nodes in two directions. The first direction is the
trust evaluation of their neighbors in the same communication
range (node level). Additionally, every CH has to record and
evaluate the trustworthiness of other CHs and report it to the
controller. The second direction is that CH aggregates the trust
update messages from cluster nodes and computes cluster-
based trust aggregation and trust reliability of cluster nodes.
These computed trust scores are sent to the controller. CHs can
provide a quick response when malicious nodes are detected
via aggregated trust score AT tyC,Y . Here, the cluster head can
stop forwarding packets from/to the malicious node and report
such events to the controller.

3) Controller Level: Algorithm 3 illustrates the trust man-
agement process at the SDN controller level. The controller,
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Algorithm 1 Trust Evaluation Algorithm at Node Level
1: while t during ∆t do
2: ∀E ∈ Events . E is any interaction event

experienced by the current node x.
3: if E triggered for node y then . y can be any node

in the same range.
4: NE

x,y = NE
x,y + 1;

5: if E is positive then
6: NE+

x,y = NE+
x,y + 1;

7: else
8: NE−

x,y = NE−
x,y + 1;

9: end if
10: end if
11: end while
12: at the end of ∆t:
13: for all y ∈ Y
14: Tmx,y = metric model(NE

x,y[, NE+
x,y , N

E−
x,y ]); ∀m ∈

Metrics
15: Tmx,y = update(Tmx,y(t), Tmx,y(t−∆t)); . Eq. 3
16: T tyx,y =

∑
m wmT

m
x,y; ∀ty ∈ Types

17: end for
18: send(T tyx,Y , CH); . CH is the CH of nodes’ cluster.

Algorithm 2 Trust Evaluation Algorithm at CH Level
1: node level function();
2: for all x ∈ C (Cluster)
3: T tyx,Y = receive(x); ∀ty ∈ Types
4: end for
5: [RX,Y , T

rel
X ] = reliability(T tyX,Y ); . Eq.s 5 and 6

6: AT tyC,Y = aggregate(T tyX,Y , RX,Y ); . Eq. 8
7: forward(T tyX,Y , controller);
8: if AT tyC,y ≤ thL then
9: report(AT tyC,y, controller);

10: end if

which has a supervisory view of the network, computes each
sensor’s overall trust scores. The trust scores, which are com-
puted at the node level, are received by the controller. Based on
these trust scores, the controller analyzes and combines these
scores for each node. To this end, the controller computes the
global trust score for each node from the collected trust scores.
Again, an outlier detection mechanism is used to ensure that
the global aggregated trust is not affected by the mouthing
attacks. The trust matrices at the controller have a broad sight
because it includes the trust scores evaluated for nodes that are
not from the same cluster. As a result, the controller determines
the trust level of every node and decides which nodes can be
trusted to provide the different network services. At the same
time, the untrusted nodes are prevented from participating
in the network operations. Therefore, the flow table updates
depend on the collected trust scores.

V. TSW SCHEME PHASES

In this section, we provide details about the three phases
of the TSW scheme. First, we describe the trust recording
approaches and the recorded trust parameters. Next, we define

Algorithm 3 Trust Evaluation Algorithm at Controller Level
1: for all x ∈ All nodes of the network
2: T tyx,Y = receive(x); ∀ty ∈ Types
3: end for
4: for all c ∈ Cs(Clusters)
5: T tyc,Y = receive(c);
6: end for
7: [RX,Y , T

rel
X ] = reliability(T tyX,Y ); . Eq.s 5 and 6

8: AT tyAll,Y = aggregate(T tyX,Y , RX,Y ); . Eq. 9
9: network services(AT tyAll,Y );

Fig. 4: Recording approaches of forwarding parameters; (a),
(b) the two overhearing cases and (c) the ACK-based case.

the trust computational models for trust evaluation in addition
to the trust updating and integration mechanisms. Finally,
we give details about the propagation phase where the trust
aggregation takes place at the CH and controller levels while
considering the reliability of these aggregated trust scores.

A. Trust Recording Phase

Each node monitors and records other nodes’ behavior in
the same communication range in the recording phase. Thus,
the recording process of trust information is accomplished by
overhearing neighboring nodes during the message interactions
and transmissions. The recorded information is learned from
the interactions between the evaluated node and the evaluating
node and the interactions between the evaluated node and
other nodes in the same communication range. Moreover, we
use direct interaction counters in the Statistics fields of the
flow table as part of the recording process. As well, some
SDWSN control messages can be used to evaluate intermediate
nodes’ behavior. For example, receiving a packet-out message
means that the intermediate nodes have delivered the packet-in
message successfully.

1) Forwarding Parameters (N+
y , N−y ): Using these param-

eters, the number of successful and unsuccessful forwarding
messages by a particular node y is recorded. Three cases of
recording these parameters are defined in the TSW scheme.

Overhearing Approach: In the first overhearing case, as
shown in Fig. 4(a), when node x sends a message to node y
that is not the destination, node x overhears the transmissions
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Fig. 5: Recording approaches of sending parameters; (a) direct
interaction and (b) overhearing cases.

of node y to check if node y forwarded the message. If the
node successfully forwarded the message, then the counter N+

y

is updated by adding 1. If not, then the other parameter counter
N−y is updated by adding 1. The second overhearing case is
shown in Fig. 4(b). Hence, when node z sends a message
to node y (node y is not the destination) and node x is a
watchdog for both nodes, then node x overhears node y’s
transmissions to check whether or not node y forwarded the
message successfully. Accordingly, N+

y and N−y parameters
are updated as in the previous case.

ACK-based Approach: In SDN-based networks, nodes send
updates between the controller and sensor nodes in the control
plane. In the TSW scheme, we utilize these types of mes-
sages to enrich the trust recording for the control traffic. For
example, node x sends a message to the controller through
node y, as shown in Fig. 4(c). If node x received an ACK
or any response confirming that the message is forwarded
successfully by node y, the counter N+

y is updated by adding
1. Otherwise, if no ACK or response is received, the counter
N−y is updated by adding 1. The packet-out message is an
instance of a response for successfully forwarding a packet-
in message. Thus, if node x sends a packet-in message to
the controller through node y, and the packet-out message is
received by node x, node y performed a successful forwarding,
and the success counter is increased by 1.

2) Sending Parameter (Ny): This parameter counts the
number of initiated messages by a particular node y (Ny).
Two approaches are used to record these counters.

Direct Interaction Approach: The first case is the direct
interaction approach, where a node receives messages from
its neighbors directly. From Fig. 5(a), when node x receives a
message from node y, the counter Ny is increased by 1. If node
y is not the source of the message and the source is node z,
and it has not already been recorded through overhearing, then
the counter Nz is increased by 1. In SDWSNs, the statistics of
direct interaction can be retrieved directly from the statistical
part of the flow table.

Overhearing Approach: In this case, as shown in Fig. 5(b),
when node x overhears node y’s transmissions, if node y sends
a message, the counter Ny is increased by 1; If node z is the
source of the message, and the message has not been recorded,
the counter Nz is increased by 1. However, if node x is a
watchdog for nodes y and z, and it records that node z sent
that message to node y, then the counter Ny is decreased by
1. Moreover, we define a specific counter of this type to count
the number of forwarded packet-in messages.

B. Trust Evaluation Phase

In the trust evaluation phase, each node executes trust
computation models based on the parameters resulting from
the recording phase. Each type of trust metric has its features,
therefore evaluation model. As a result, each of these metrics
must be computed using different trust computational models.
We divide the trust score [1, 0] into three zones, namely trusted
[1, thH ], uncertain [thH , thL], and untrusted [thL, 0]. These
trust score boundaries can be adaptive based on the two sets
of trusted and untrusted nodes and the total number of nodes
that contain trusted, trusted, and uncertain nodes [27].

1) Success/Fail Model: Trust evaluation of data forwarding
(TDFx,y ) and control forwarding (TCFx,y ) metrics depends on
successful and unsuccessful hits of the measured property. The
Bayesian method is used to compute these types of trust met-
rics [28]. Additionally, we consider rewarding the successful
hits and penalizing the unsuccessful hits. Therefore, rewarding
and penalty factors are defined as shown in equation 1 which
is inspired by [21]. The rewarding term is used to ensure a
slow rising of the trust scores and reward credit for the number
of successful hits. The penalty factor is used to ensure a fast
falling of the trust scores when there are unsuccessful hits and
punish the failure. As a result, the falling and rising behavior
are less sensitive to the uncertain area. Equation 1 combines
the Bayesian method with the rewarding and penalty factors
in the trust computation as follows:

TMetric
x,y =

N+
x,y + 1

N total
x,y + 2

.
N+
x,y

N+
x,y + 1

.
1√

N−x,y + 1
(1)

where x is the evaluating node which calculates the trust scores
and counts the number of success and failure hits, and y is
the evaluated node by node x. N+

x,y is the successful count
that node x has recorded about node y. N−x,y is the number of
failure hits that node x experiences with node y. TMetric

x,y is
the trust metric computed by x for y. In equation 1, the first
term is the Bayesian factor and then the rewarding and the
penalty terms, respectively.

2) Threshold-limit Model: The trust evaluation of data
sending-rate (TDSx,y ), control sending-rate (TCSx,y ), and new flow
(TNFx,y ) trust metrics is done based on a threshold limit. For
example, sending a large number of packet-in messages attacks
the control line between nodes and the SDN controller. In this
case, each node counts the number of received parameters,
e.g., the number of initiated packet-in messages from a particu-
lar node. Thus, a defined threshold η for this parameter should
not exceed a specific limit. Exceeding the threshold limit must
degrade the trust score. Threshold η can be defined as the
maximum number of expected messages from the sending
node or the maximum capacity of received messages by the
receiving node. We set this to be the initiated number of data
and packet-in messages.

In the proposed threshold-limit model, the trust score starts
degrading at η1 when the Ny approaches the threshold value
where η > η1. The trust score degrades linearly from full trust
value at η1 to (1/2) when Ny is equal to η. Another drop starts
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from η to η0, at which point the trust score reaches the zero
value. Thus, the proposed threshold equation is as follow:

TMetric
x,y =


1 , Ny ≤ η1
1− η1−Ny

2(η1−η) , η1 < Ny ≤ η
Ny−η0
2(η−η0) , η < Ny ≤ η0
0 , otherwise

(2)

Basically, the distance between η and η1 must be greater
than the distance between η and η0 because the trust score
must drop faster and penalize more when Ny exceeds the
threshold value. Hence, the threshold points η1 and η0 are
calculated as follows: of η1 = η

2 and η0 = η + η
4 . Note

that η is set by the network manager based on the network
statistics or prior knowledge of the expected maximum limit
of the number of initiated messages inside the network [29].
This threshold must be lower for a network with a limited
bandwidth than for a higher bandwidth network.

Moreover, the trust evaluation of control sending-rate trust
metric (TCSx,y ) depends on lower and higher limit thresholds
as it should not exceed a specific limit ηmin or fall below
another specific limit ηmax. The trust score of this node must
be degraded when going above or below these two threshold
limits. The lower limit threshold ηmin is defined for control
messages due to the properties of SDWSNs where nodes in
this network have to send symmetric messages (e.g., statistical
information) periodically. Thus, the node is expected to send a
certain number of this type of message. A selfish node, which
tries to save its residual energy, may refrain from sending these
messages. Similarly, thresholds ηmin and ηmax are set by the
network manager based on the network statistics. The same
threshold-limit model is used to determine the trust score based
on the lower threshold with few modifications of inequalities
and threshold points η1 = 3η

2 and η0 = η − η
4 .

3) Trust Updating: To consider the historical trust scores,
the new trust score at time t is calculated by combining
the current trust score during the time window (∆t) and the
previously calculated trust score at time (t −∆t). Therefore,
we use an improved trust updating mechanism to compute the
trust as follows:

T (t) =


(1− α)T (t) + αT (t−∆t)

, if T (t) ≤ T (t−∆t).
(1− (α+ β))T (t) + (α+ β)T (t−∆t)

, if T (t) > T (t−∆t) and α+ β < 1.
(3)

where T (t) is the new trust score computed for the current
window ∆t at time t, while T (t − ∆t) is the previous trust
score calculated in the previous window at time (t −∆t). T
is TMetric

x,y for all symbols. α is a decay factor determining
the balance between the current and previous calculations of
trust. β is the newly defined decay factor which gives more
weight to the old trust score when the current trust score is
greater than the old score. In other words, the trust scheme
relies more on the old trust score when the node has behaved
maliciously in the past.

4) Trust Integration: Each node computes the trust score
of other nodes in every ∆t. Each separate trust score depends

on a different number of trust metrics. For example, control
trust is computed based on control sending rate and control
forwarding trust metrics. Having a separate control trust score
from the data trust score enhances the ability to detect attacks
that target the control plane and network availability. The
equation below gives the weighted linear approach to compute
the trust scores by combining trust metrics:

TTypex,Y (t) =
∑

m∈Metrics

wmT
m
x,Y (t) (4)

where Type represents the separate trust scores for specific
applications such as data and control trust scores. Metrics
are the trust metrics used to calculate the specific trust score.
However, for each trust score type, not all trust metrics are
combined or have the same impact. Therefore, a weighting
parameter is used for every trust metric to determine its weight.
In the equation, 0 < wm < 1 and

∑
m∈Metrics wm = 1. For

example, if a metric m is not related to a specific trust type, its
weight wm will be zero; hence, it will not be included in that
trust type evaluation. On the other hand, it is possible to have
a trust type computed through only one trust metric. Assigning
the weighting parameters depends on a specific application to
utilize the trust management performance.

C. Trust Propagation Phase

In this section, we describe our defense mechanism against
mouthing attacks through computing trust reliability. Further-
more, we describe how the trust aggregation takes place at CH
and controller levels.

1) Trust Reliability: The CHs and the controller must
validate the aggregated trust scores as some nodes can perform
the mouthing attacks. In TSW scheme, two reliability scores
are defined, namely, score reliability and node reliability. The
node reliability (T relx ) is similar to the recommendation trust
metric, which evaluates the trustworthiness of a node’s positive
or negative recommendation of other nodes. However, the
score reliability (Rx,y) is used to detect an outlier from the
aggregated trust scores at CH and controller levels.

To compute these reliability scores, first, the average trust
score (ATavg,y) of collected trust scores of a certain node y
is computed as a base point. Then, the trust reliability of each
trust score of node y received by the CH or controller from a
node x (score reliability) is computed as follows:

Rx,y(t) = 1− |Tx,y(t)−ATavg,y(t)| (5)

where the resulting value of Rx,y is used to compute the
aggregated trust score in section V-C2. Again, score reliability
only determines the weight that must be considered for a
single trust score. The score reliability of each trust score is
determined separately. However, these values do not determine
the evaluation trustworthy of node x. Thus, the node reliability
can be calculated by using the score reliability as follows:

T relx (t) =

∑
y∈Y Rx,y(t)

NY
(6)

where NY is the number of neighbor nodes. If the calculated
node reliability (T relx ) of node x is in the trusted zone as
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defined in section V-B, then this node collects scores at that
level which can be used toward computing trust aggregation.
The node reliability has the exact updating mechanism de-
scribed in equation 3. To conclude, the node reliability score
is considered a special trust score type. This score evaluates
the node’s trustworthiness when evaluating others. Thus, this
trust score is used to detect mouthing attacks and avoid biased
trust scores. Consequently, the controller excludes trust scores
submitted by a node that has a low reliability score. This
isolation guarantees that bias nodes are not capable of affecting
the detection efficiency of TSW scheme.

2) Trust Aggregation: Due to the hierarchical architecture,
the trust scores are aggregated at CH and controller levels. At
the CH level, the aggregated trust score value is calculated
for each node in the cluster. Then, the controller also collects
trust scores aggregated by CHs to compute the node’s trust
evaluation. Usually, to combine the collected trust scores, the
average is computed to represent the final trust as follows:

ATavg,y(t) =

∑
x∈X Tx,y(t)

NX
(7)

where ATavg,y is the average aggregated trust score for the
node y, which is calculated by averaging the received trust
scores of node y from different nodes in X . X is a one-
dimensional array of nodes that are able to evaluate the trust of
node y. NX is the total number of x’s in X . However, both CH
and controller must validate these collected trust scores from
the sensor nodes as some nodes can be biased and perform
mouthing attacks. To detect any outliers in the aggregated
trust scores, we use a modified Averaged Difference Algorithm
from spatial weighted outlier detection presented in [30].

Therefore, CH evaluates the trustworthiness of nodes in its
cluster, and each cluster node sends the trust scores it computes
about its neighbors to the controller. CH computes the cluster-
based aggregated trust of each cluster node by averaging the
receiving trust scores with weights, where the weight of each
trust score is computed by trust reliability:

ATC,y(t) =

∑
x∈C Tx,y(t).Rx,y(t)∑

x∈C Rx,y(t)
(8)

where Rx,y is a value between [0, 1] called score reliability
which is defined in the next section V-C1. Using this approach
in equation 8, the aggregated trust score is calculated mainly
from the reliable nodes by giving the outlier evaluation less
weight to be included in the calculation. In equation 7, the
exact weight is given for all collected trust scores. This leads
to the trust score being easily affected by the mouthing attacks.
This makes our approach a more realistic approach than the
averaging approach in equation 7.

However, at the CH level, the trust scores are collected from
the cluster nodes only. By comparison, the controller collects
trust scores from every node in the network. This gives the
controller the advantage to evaluate the trustworthiness of any
node from a broad sight and increases its ability to detect
any malicious behavior. Therefore, the global aggregated trust
score is computed as follows at the controller level:

ATAll,y(t) =

∑
x∈All Tx,y(t).Rx,y(t)∑

x∈AllRx,y(t)
(9)

where ATAll,y is the global trust score for node y and is
computed by the SDN controller. This score is used by the
controller to detect any malicious behavior of node y. Also,
it determines the credibility of this node’s participation in
different network services and applications.

VI. TRUST MODEL ANALYSIS

In this section, we provide an analysis of the trust evaluation
models presented in the previous section V. The analysis is
conducted to study the behavior of the trust score under these
models. Note that all evaluation is implemented using Matlab.
We study the behavior of the success/fail model, the threshold-
limit model, the updating mechanism, and the aggregation
approach with some existing models.

A. Analysis of Success/Fail Model

The trust score does not only represent the probability
of having a successful experience. However, it is defined
as the probability of having a future successful experience
given the probability of successful events of past experiences.
The Bayesian method is the best approach to determine the
posterior probability. Thus, the Bayesian method is used to
compute the trust score of success/fail type [17], [23]:

TMetric
x,y =

N+
x,y + 1

(N+
x,y + 1) + (N−x,y + 1)

(10)

In TSW scheme, we use an improved Bayesian method
(section V-B1). We consider a rewarding factor and a penalty
factor to make our model more sensitive to the bad behavior
in the uncertain area of the trust score. The rewarding factor
approaches one gradually as the number of successful hits
increases, while the penalty factor approaches zero gradually
as the number of unsuccessful hits increases. Hence, we
consider the density of communication experiences and the
density of successful and unsuccessful experiences.

Definition 1. In TSW scheme, node x considers node y
malicious; i.e., Tx,y ≤ thL only if Nx,y > 0 and N−x,y > N+

x,y ,
where N−x,y and N+

x,y are positive integers.

Lemma 1. TSW is able to detect malicious behaviour at
node level if the number of successful experiences (N+

x,y) is
less than the number of unsuccessful experiences (N−x,y). Also,
Tx,y is sensitive to the bad behaviour of y.

Proof: If node y is considered bad, then the computed trust
score by node x is Tx,y < thL.

Tx,y =
N+
x,y + 1

N total
x,y + 2

.
N+
x,y

N+
x,y + 1

.
1√

N−x,y + 1
≤ thL (11)

Case 1: When the penalty factor (PF) > thL, where PF =
1√

N−
x,y+1

, N−x,y <
1
th2

L
. So, whatever N+

x,y is, if N−x,y >
1
th2

L
,

node y is considered a malicious node.
Case 2: When PF < thL, N−x,y <

1
th2

L
−1. To prove this, we

need to prove that
N+

x,y+1

Ntotal
x,y +2

N+
x,y

N+
x,y+1

< thL when N−x,y < N+
x,y .

Then, N+
x,y < thLN

+
x,y + thLN

−
x,y + 2thL. Finally, N+

x,y <

( thL

1−thL
)N−x,y + 2thL

1−thL
. As thL > 0, N+

x,y < N−x,y . �
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(a) Bayesian model.
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(b) The proposed model.

Fig. 6: Success/fail trust score behavior when using three dif-
ferent models with the variation of successful and unsuccessful
experiences from 0 to 100.

Lemma 2. When there are no successful experiences,
Tx,y = 0.

Proof: When N+
x,y = 0, the rewarding factor is equal to zero

(
N+

x,y

N+
x,y+1

= 0), which leads to Tx,y = 0. �

Lemma 3. When there are no unsuccessful experiences,
then the node must not be considered a malicious node as
N+
x,y ≥ 1. Also, when N+

x,y →∞, Tx,y → 1.

Proof: When N−x,y = 0, then the penalty factor is equal to

1. This leads to Tx,y =
N+

x,y

N+
x,y+2

> thL, then, N+
x,y >

2thL

1−thL

where thL ∈ [0, 1] and N+
x,y ≥ 1. �

Fig.s 6a and 6b show the effect of successful and unsuc-
cessful interactions on the trust score. We vary the number
of successful and unsuccessful interactions from 0 to 100
to cover all possible values. Fig. 6a is obtained from the
Bayesian model in equation 10. It shows that the Bayesian
model behaves similarly to a ratio-based model ( N+

Ntotal
) when

N total is large. However, when N total is small, the Bayesian
model tends to not rely very much on the few successful
experience counts. Fig. 6b shows the behavior of the proposed
model. With the rewarding and penalty factors, the trust score
is more sensitive to the unsuccessful experience and drops to
low scores exponentially.

B. Analysis of Threshold-limit Model

Our threshold-limit model in equation 2 is used to detect
flooding behavior. A threshold-limit model is presented in [23]
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(a) ETMRM threshold-limit model.
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(b) Proposed threshold-limit model.

Fig. 7: The influence of η in the threshold-limit models.

as follows:
TMetric
x,y =

1⌈
Ny

η

⌉ (12)

However, there are some issues/limitations in using this
model to compute the trust score. As shown in Fig. 7a,
the model in equation 12 sets the trust score to be 1 when
Ny is less than the threshold η, even when Ny approaches
the η value. Furthermore, the trust score jumps to (1/2)
value after the recorded parameter count Ny goes beyond the
threshold η. However, Ny does not degrade for some values of
Ny < 2 ∗ η and the trust score remains the same when Ny is
between [η, 2∗η]. This is because the trust score changes with
Ny = k∗η, where k = 1, 2, 3, ... . Finally, we can observe that
the trust score does not reach the zero value even if Ny >> η.
In the proposed model, we consider the mentioned issues of
equation 12 when computing this type of trust metrics. Also,
we take into consideration the fact that the sensor nodes are
resource-limited devices. Thus, the proposed approach must be
simple and have lightweight computational operations. Fig. 7b
shows the outcomes of the proposed model (section V-B2)
with the same threshold values used in Fig. 7a. The proposed
model is sensitive when the number of interactions approaches
the threshold value. Moreover, the proposed model becomes
more sensitive when the number of interactions surpasses the
threshold value by rapidly approaching the zero trust score.

C. Analysis of Trust Updating Mechanism

The trust updating mechanism in [31] is widely used [16],
[19], [32] in the trust updating process as follows:

TMetric
x,y (t) = (1− α)TMetric

x,y (t) + αTMetric
x,y (t−∆t) (13)
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(a) without β factor.
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(b) with β factor (β = 0.2).

Fig. 8: The influence of α factor in the trust updating mech-
anisms for success/fail model.

In the trust updating process, there are two cases, one is
falling when T (t) ≤ T (t − ∆t), and the other one is rising
when T (t) > T (t−∆t). Equation 13 provides similar behavior
for rising and falling cases. However, we need to have a slow
rising of the trust score to ensure that the pre-misbehaving
nodes are no longer malicious and the system can trust them
again. Our proposed mechanism in equation 3 behaves the
same as equation 13 when β = 0. However, the trust score
rises at a slower rate when β > 0.

Fig.s 8a and 8a show the trust score behavior from the
trust updating in equation 13 and 3, respectively. In these
figures, the total number of counts N total is 50. The success
counter N+ goes from zero (sample number 1) to N total

(sample number 51), and it remains with zero unsuccessful
count until (sample number 100). Then, the success count
goes to zero again at sample number 150. Similarly, N− is
equal to (N total - N+). In Fig. 8b, the trust score rises at a
slower rate compared to Fig. 8a due to the effect of β factor.
That is, it takes longer for a node to be trusted after behaving
maliciously. In this figure, the value of β is 0.2.

Definition 2. |∆t|R is the required number of time windows
(∆t) of regularly acting by the malicious node to raise its trust
score Ty to the trusted zone. The number of ∆t, in which
malicious behavior is presented, is |∆t|M .

Definition 3. The malicious node regularly acts for
|∆t|R > |∆t|M to restore its reputation and deceive the
scheme.

Lemma 4. TSW scheme is resilient against the deception

of the malicious node. Also, it ensures a slower rising and
faster falling of the trust score for each time window based
on past behavior.

Proof: As we mentioned, there are falling and rising cases.
Case 1: Assume that there is a continuous falling, i.e., Ti >

Tj , where i < j, ∀i, j ∈ [1, n].

T = (1− α)Tn + αTn−1

= (1− α)Tn + α[(1− α)Tn−1 + αTn−2]

= (1− α)Tn + α[(1− α)Tn−1 + α[(1− α)Tn−2 + αTn−3]]

= (1− α)Tn + α(1− α)Tn−1 + α2(1− α)Tn−2+

...+ αn(1− α)T0

= (1− α)

n∑
k=0

αkTn−k

= (1− α)Tn + (1− α)

n∑
k=1

αkTn−k

The first part is the most recent evaluated trust, while the
second part determines the effect of old trust scores. As k → n,
Tk becomes less effective on the new trust score. Thus, if
n→∞, Tk will be neglected when k → 0.

Case 2: Assume that there is a continuous rising, i.e., Ti <
Tj , where i < j, ∀i, j ∈ [1, n], and α + β < 1, (γ = α + β
where γ < 1),

T = (1− γ)Tn + γTn−1

= (1− γ)

n∑
k=0

γkTn−k

= (1− γ)Tn + (1− γ)

n∑
k=1

γkTn−k �

Comparing cases 1 and 2, the model ensures that older trust
scores have less weight in the falling case than the rising case
as γ > α, while the newer and larger trust scores have less
weight when rising.

Using decay factors, the proposed updating mechanism
effectively defends against irregular behavior. The malicious
node needs to act non-maliciously for a long period of time to
avoid detection. In other words, to raise its trust score, the node
must regularly act for a considerable number of time windows
(∆t). β factor is only used when the recorded trust level of a
node is at the low level and the current level is higher, which
indicates that this node might be trying to launch an ON-OFF
attack. To summarize, a higher α value means that the new
computed trust score relies less on the trust evaluation of the
current window than the old trust score that is computed in the
previous ∆t. A higher β value means that the new computed
trust score relies less on the current trust evaluation than the
old trust score, which is computed in the previous ∆t when
the current computed score is higher than the old one. The
values of α and β decay factors depend on the environmental
and operational conditions of each trust metric [31].

D. Analysis of Trust Aggregation Model

In TSW scheme, the trust scores are aggregated at CH
and controller levels. Moreover, two reliability scores are
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computed, which are score and node reliability, as discussed
in section V-C.

Definition 4. Reliable evaluator gives T > thH if a node
is considered a good node and T < thL for bad nodes.

Definition 5. Unreliable evaluator gives T < thH for good
nodes and T > thL for bad nodes.

Lemma 5. TSW scheme is robust against up to 54% of
unreliable evaluators.

Proof: Assume that K is the total number of evaluators, I
is the number of reliable evaluators, and J is the number of
unreliable evaluators, where K = I+J . Then, equation 9 can
be written as:

ATy =

∑K
k=1 Tk,y.Rk,y∑K
k=1Rk,y

=

∑I
i=1 Ti,y.Ri,y +

∑J
j=1 Tj,y.Rj,y∑I

i=1Ri,y +
∑J
j=1Rj,y

(14)
Case 1: Assume that a group of unreliable evaluators (J)

tries to deceive the system about a non-malicious node y by
providing zero trust, i.e., Ti,y = 1, ∀i ∈ I , and Tj,y = 0,
∀j ∈ J . Then,

ATy =

∑I
i=1Ri,y∑I

i=1Ri,y +
∑J
j=1Rj,y

(15)

when I = J = K/2, ATavg,y = 0.5. Using equation 5,
Rk,y = 0.5, ∀k ∈ K. Thus, from equation 14, ATy = 0.5,
where Ri,y and Rj,y are equal to 0.5. This is also applied when
a group of unreliable evaluators (J) tries to deceive the system
about a malicious node y by providing Tj,y = 1, ∀j ∈ J , while
Ti,y = 1, ∀i ∈ I .

Case 2: In this case, we consider the worse case of case 1, in
which the reliable evaluators give the non-malicious node (y)
Ti,y = thH , ∀i ∈ I , while the group of unreliable evaluators
tries their best to deceive the system by giving a zero trust
score for node y, i.e., Tj,y = 0, ∀j ∈ J .

Assume that thH = 0.7 and thL = 0.3. We have,

ATavg,y =

∑
i∈I Ti,y +

∑
j∈J Tj,y

I + J
=

7I

10N
(16)

Thus, Ri,y = 3
10 −

7I
10N , ∀i ∈ I , and Rj,y = 1− 7I

10N , ∀j ∈ J .

ATy =

∑I
i=1 0.7.Ri,y∑I

i=1Ri,y +
∑J
j=1Rj,y

< 0.3 (17)

Solving this inequality will lead to I < 0.45335K and J >
0.54664K. �

VII. PERFORMANCE EVALUATION

In this section, we first discuss the simulation setup. Then,
we numerically analyze the performance of the TSW scheme
in terms of the trust score and the detection rate against
several attack scenarios, namely black-hole, selective forward-
ing, DoS, good mouthing, and ON-OFF attacks. Finally, we
provide an analysis of communication and storage overhead.
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Fig. 9: An example of simulation model.

A. Simulation Setup

We have conducted simulations with Matlab to evaluate the
performance of the TSW scheme. We consider a network with
40 randomly deployed sensors over an area of 400 x 400
with one sink node as an SDN controller. We further divide
the network into equal-sized fixed clusters. The cluster size
is set to be ten nodes, resulting in a total of four clusters.
All nodes have a communication range of 150, while the
sink node range is 300. The location of the sink is at the
extremity of the network (100,100). The network area with
the clusters and sensor placement used in the simulations is
shown in Fig. 9. Moreover, we consider two types of nodes:
normal nodes, which have good cooperation in forwarding
messages and providing trust scores for others, and malicious
nodes that perform one of the malicious behaviors defined
in section III-C. The simulation proceeds in rounds, where
various aspects related to sensor communication and trust
evaluation are updated, and each round is equal to a time
window (∆t). The simulation ends if it reaches round 1000.
The default parameter values for the trust scheme are defined
as follows: thH = 0.7, thL = 0.3, wm is equally distributed
for all m ∈Metrics, α = 0.5, and β = 0.2.

B. Performance Analysis

First, we study the detection performance of TSW whereby
a malicious node initiates several attack scenarios. Fig. 10
demonstrates the trust score as a function of the simulation
rounds. In each scenario, the malicious node launches an attack
at the 100th round, and terminates its malicious behavior at
the 200th round.

1) Black-Hole (BH) Attack: Fig. 10a analyzes the detec-
tion performance against the malicious node performing a
blackhole attack. The figure presents the trust score computed
the SDN controller, the cluster head of the cluster containing
the malicious node, and another cluster member that is a
neighbour of the malicious node. Once the attack is initiated,
the trust score of the malicious node drops significantly at all
SDWSN levels and reaches zero. Note that if the malicious
node stops dropping messages, its trust score does not imme-
diately jump from the untrusted to the trusted zone, where the
node requires more rounds to gain trust thanks to the proposed
updating mechanism.
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(a) BH attack detection.
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(b) SF Attack detection at CH level.
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(c) SF attack detection at controller level.

80 100 120 140 160 180 200 220
0

0.3

0.7

1

Simulation Time

T
r
u

s
t 

S
c

o
r
e

 

 

Data Trust at CH (Proposed)
Data Trust at Controller (Proposed)
Control Trust at CH (Proposed)
Control Trust at Controller (Proposed)
New−Flow Trust at CH (Proposed)
New−Flow Trust at Controller (Proposed)
New−Flow Trust (ETMRM)

(d) DoS attack detection.
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(e) BH attack detection with GM attack.
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(f) Defending against ON-OFF attack.

Fig. 10: Detection performance for black-hole, selective forwarding, DoS, good mouthing, and ON-OFF attacks.

2) Selective Forwarding (SF) Attack: Here, the malicious
node randomly drops received messages by a specific drop
percentage (Mp). This scenario repeats with different values
of Mp. Fig. 10b presents the aggregated trust scores computed
for the malicious node by the CH. When Mp equals 50%,
70%, and 90%, TSW scheme is able to classify the malicious
node as an untrusted node. However, when Mp is 10%, the
CH is uncertain about determining the trustworthiness of the
malicious node. When Mp is 30%, the trust score of the
malicious node is very close to the uncertain zone.

Fig. 10c presents the global trust scores computed by the
SDN controller. When Mp is larger than 30%, the controller
deems the malicious node as an untrusted. Only when Mp is
10% or less that the controller is uncertain about determining
the trustworthiness of the malicious node. As a benchmark,
we also compare with the detection performance of ETMRM.
TSW detects the malicious node when Mp is larger than 30%,
whereas ETMRM detects the malicious node when Mp is
larger than 90%. Due to the incorporation of the rewarding and
penalty factors when computing the forwarding trust metrics,
TSW outperforms ETMRM.

3) DoS Attack: Here, to launch DoS attack on several
fronts, the sending rate of the malicious node increases grad-
ually for data, control, and packet-in messages. Therefore, we
need to observe the data trust metric, the control trust metric,
and the new-flow trust metric. Fig. 10d shows that all trust
metrics starts dropping once the malicious node initiates the
attack. Although the malicious node behavior returns to normal
at round 200, the trustworthiness of the malicious node does
not enter the trusted zone instantly due to the use of the trust
updating mechanism. In contrast, in ETMRM, the trust score
jumps to the trusted zone immediately after the attack stops
as it does not consider past scores in the evaluation updating
mechanism. In addition, ETMRM scheme does not provide
detection functionality at other levels besides the controller
level. This prevents the scheme from responding quickly to
malicious behaviors.

4) Good Mouthing (GM) Attack: We need to determine the
effect of biased trust scores due to GM attack. In Fig. 10e,
a malicious node launches a BH attack by dropping received
messages. At the same time, other malicious nodes try to cover
for this node by submitting a full trust score to the network.
Malicious nodes make up for 30% of the total number of
nodes. Fig. 10e shows the results of the attack detection when
the bias score detection is applied and not applied, respectively.
Fig. 10e shows the effectiveness of trust reliability in avoiding
bias trust scores and computing the aggregated trust score from
reliable nodes. Therefore, TSW can successfully detect the
malicious node that drops messages even when 30% of nodes
perform a GM attack.

5) ON-OFF Attack: We evaluate the TSW scheme against
the ON-OFF attack scenario, whereby the malicious node
performs a BH attack periodically. That is, the malicious node
launches the attack for a certain period of time, and then it
behaves regularly for another period of time. The period of
being ON (behaving maliciously) or OFF (behaving normally)
is called the ON-OFF period (ε). For example, if ε = 5, the
malicious node launches a BH attack for five time rounds, and
it behaves normally for the next five time rounds, and so on.

Fig. 11 shows the detection rate of a malicious node during
the attack period with different ON-OFF periods (ε = [1, 20]).
We modify the ETMRM to protect against ON-OFF attacks by
adding an updating mechanism shown in equation (13) (named
ETMRM U). In Fig. 11, TSW scheme (α = 50%) detects the
malicious node more than 70% of the attack period. However,
the modified ETMRM method recognizes the malicious node
as untrusted during the ON period only as it does not consider
the historical trust level in the next time window. In addition,
we observe that the detection rate for smaller ε is better when
α is low (0.3), while a lower detection rate is observed for
longer ε. As shown in Fig. 8, the trust convergence speed is
lower when old scores are smaller (slow rising case), while the
trust convergence speed is larger when old scores are larger
(fast falling case). Therefore, as α increases, it allows the trust
scheme to keep the malicious node in the untrusted zone.
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Fig. 11: BH attack detection with ON-OFF attack.

Fig. 12: SF attack detection on the control plane.

In Fig. 10f, a malicious node launches a BH attack with
ε = 10. Due to the use of the trust updating mechanism, the
malicious node does not reach the trusted zone immediately.
Longer time is needed to reach the trusted zone again com-
pared to the ETMRM scheme. Note that this figure shows
only the aggregated trust score computed based on the trust
scores collected from the network about the malicious node.
However, the controller can have a more restrictive policy for
the ON-OFF attacker. For example, the controller can suspend
the attacker for a sufficient time period to provide network
services such as the forwarding process. Thus, the controller
makes the final decision based on its policies on the previously
recorded attackers.

6) Attacking the Control Plane: To demonstrate the impor-
tance of separating the control and data plane, we simulate
a selective forwarding attack that deliberately drops control
traffic. The number of control messages is less than that of
the data traffic. Recall that wc determines the weight of the
trust metrics of the control traffic. Fig. 12 shows the detection
rate against the percentage of malicious nodes in the network.
Here, we vary wc from 0.3 to 0.7 and show that our trust
management scheme outperforms the no-separation baseline
as well as ETMRM. This demonstrates the advantage of a
decoupled treatment in our trust management scheme.

7) Collaborative Attack Detection: In this scenario, we
evaluate the effect of biased aggregated trust scores on the
detection rate of the BH, SF (Mp = 50%), and new-flow
attacks. We design a scenario where a group of malicious
nodes cooperates to perform one of these attacks while these
nodes try to cover each other by performing GM attacks.

Specifically, each malicious node sends full trust scores about
other malicious nodes to a higher level to avoid their behavior
detection. Fig. 13 shows the detection rate of malicious nodes
with the increase in the number of malicious nodes in the
attacking group (malicious percentage). We observe that the
detection rate of BH and DoS attacks is mostly high (above
70%) when the malicious percentage is lower than 40%. A
similar trend is shown for SF attack but with a lower detection
rate. This is because only half of the messages are dropped.
We also observe that with the increase of malicious nodes, the
detection rate at the CH level becomes slightly higher than
at the controller level. This is because of the increase in the
number of collected biased scores at the controller than at the
CH level. TSW shows better performance than ETMRM in
all cases. ETMRM shows poor performance in detecting the
new-flow attack when combined with a good mouthing attack.

C. Overhead Analysis

In TSW, we use topology discovery protocol for trust
reporting [23]. Trust scores are attached to the report messages
to minimize the communication overhead. First, we consider
the total communication overhead of schemes considering
the worse case (when every node wants to connect with
every other node). TSW has a communication overhead of
Π + π(h − 1), where Π is the total number of nodes, π is
the number of clusters (or the number of aggregation points
in ETMRM), and h is the average hop count to the controller.
Due to the lack of an SDN controller, the communication
overhead is larger in distributed protocols since each eval-
uating node needs to request trust recommendations from
other nodes. We calculate the communication overhead for
a clustered scheme in [20] to be 2π(Π2 + Π) + 2π2 + 2π.

The TSW scheme uses lightweight computational models to
calculate the trust scores that fit the limited-resource devices
in terms of computational overhead. Next, we analyze the
memory requirement. each node must store trust counters and
scores for each of its neighbors. The counter is reset every
∆t; thus, one byte counter can be sufficient. Assume that τ
and p are the total bytes needed for trust scores and counters,
respectively, the storage required for a sensor node in TSW
is (τ + p)φ, where φ is the average number of neighbors
for a node. For the CH node, additional storage of τ(ξ2) is
required for the cluster trust matrix where ξ is the average
number of cluster members. Table II shows a comparison of
the storage overhead. On another note, the overhearing process
may cause an issue due to the sensor’s power constraint. Many
research studies have aimed to optimize the watchdog process
and reduce power consumption [33].

Table II: Storage and Communication Overhead

Overhead Schemes Value
Communication TSW Π + π(h− 1)

ETMRM Π + π(h− 1)
non-SDN 2π(Π2 + Π) + 2π2 + 2π

Memory TSW (τ + p)φ, CH: (τ + p)φ+ τ(ξ2)
ETMRM (τ + p)φ
non-SDN (τ + p)φ, CH: (τ + p)φ+ τ(ξ2 + π)
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(a) BH attack detection. (b) SF attack detection (Mp = 50%). (c) New-flow attack detection.

Fig. 13: Collaborative attack detection with GM attack.

VIII. CONCLUSION

In this paper, a hierarchical trust management scheme for
SDWSNs called TSW has been designed to secure SDN-
enabled wireless sensor networks. With TSW, trust scores at
each level of the SDWSN architecture can be computed to
allow for swift response against malicious nodes to secure net-
work services. Moreover, TSW considers separate trust scores
for the data plane and the control plane, respectively, to detect
potential elaborate attacks on either plane. Additionally, using
outlier detection and weighted averaging mechanisms, TSW
can resist the dishonest behavior. The efficacy of the TSW
scheme has been demonstrated by simulating and analyzing
several communications and trust management threats. For the
future work, we will design an adaptive and dynamic trust
management by considering the energy consumption.
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