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Dynamic Topology Design of NFV-enabled
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Abstract—Next-generation networks are endowed with en-
hanced capabilities thanks to software-defined networking and
network function virtualization (NFV). There is a radical shift
from device-centric to experience-driven environments of which
data is the primary driver behind its running engines. In this
paper, we consider joint topology design, traffic routing and NF
placement for unicast NFV-enabled services. We develop an end-
to-end model-free deep reinforcement learning (RL) framework
to dynamically allocate processing and transmission resources,
while considering time-varying network traffic patterns. First, we
provide a flexible pre-processing technique that represents and
reduces the state space and action space of the considered joint
problem for the deep RL algorithm. Second, we present a deep
deterministic policy gradient (DDPG) algorithm that is enhanced
with a model-assisted exploration procedure. Due to the multiple
resource types with strongly adverse effects, the existing vanilla
DDPG algorithm cannot achieve consistent performance. The
model-assisted exploration procedure, which utilizes a perturbed
step-wise sub-optimal integer linear program, bootstraps and
stabilizes the vanilla DDPG algorithm and finds optimal solutions
efficiently.

Index Terms—Beyond 5G networks, DRL, NFV, NF chain
embedding, service composition.

I. INTRODUCTION

Network function virtualization (NFV) and software defined
networking (SDN) have paved the road for the use of powerful
and sophisticated service provisioning algorithms to cater
towards the increasing demand and ubiquity in modern-day
communication networks. Thanks to NFV and SDN, service
providers possess a (partially) centralized view of the network
substrate, whereby network elements (i.e., routers and servers)
are programmable and virtualizable.

In an NFV-enabled environment, a service request specifies
how a certain traffic class should be processed prior to arriving
at the destination(s). That is, a network service manipulates
the packet header and context of traffic flows in the data
plane using the so-called (virtual) network functions. Consider
for instance a firewall-protected cache dissemination service,
where a source sends a signal to induce the cache to dissemi-
nate some information to a destination, as shown in Fig. 1-(a).
The illustrated network service is comprised of a firewall and
a cache. Traditionally, NFs are implemented at the end-users
or at fixed middlewares in the network hardware. In NFV, such
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Fig. 1. Two NF chain topologies that realize the same network service request.
The network service is firewall-protected and disseminates traffic to several
destinations from a web-based cache which can be replicated.

NFs are virtualized, and can be deployed at several NFV nodes
(commodity servers). Here the service request is represented
by a directed acyclic graph, called an NF chain, whereby each
vertex represents an NF or a terminal node. It is important to
regard the NFs as logical nodes rather than as fixed nodes
(as in the virtual network embedding literature). Therefore,
in many network scenarios, semantically several NF instances
can be deployed in parallel or in a distributive manner. There
exist multiple NF chain topologies that represent the same
service request, which gives rise to the problem of topology
design (or service composition) [1]–[3]. For instance, Fig. 1-
(b) illustrates another valid NF chain topology in which the
firewall is implemented in a distributive manner and the cache
is parallelized. Deploying the firewall in a distributed manner
may be needed when the resources for such NF type is low on
each NFV node. Moreover, the parallelization of the cache can
be more processing-efficient when the processing resources are
particularly scarce close to destination 1.

In addition to topology design, the logical NF chain needs
to be embedded onto the network substrate, which gives rise
to the NF placement and traffic routing problem. That is, we
need to decide where to place the NF instances and how to
route the traffic between the source and destinations to traverse
the embedded NF instances [4]. The three aformentioned
problems, namely the topology design, traffic routing, and
NF placement, are essentially joint problems with correlated
and conflicting effects. Designing a logical NF chain can be
ineffective if not considered jointly with the traffic routing and
NF placement.

In the core network, traffic patterns exhibit time-varying
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characteristics, which need not be periodic nor follow tractable
traffic models. In addition, the scale of demands (in core
networks) can be large relative to the granularity at which it
is managed/routed [5]. Therefore, there is a need for dynamic
provisioning that tackles time-varying characteristics of the
service request.

So far, most existing approaches that address the joint
composition, routing and NF placement (with fixed and vary-
ing rate requirements) are model-based or optimization-based.
Model-based approaches place strong and often impractical
assumptions on the traffic model and the environment con-
straints for tractability. In addition, communication networks
are becoming increasingly time-varying, dynamic, and more
difficult to model. In practice, optimization-based methods
produce rigid solutions with arguably small degrees of free-
dom. A deviation from an assumed model can lead to a
significant degradation in the performance of the underlying
solution (such as in the probabilistic routing literature [6]).
To this end, an alternative solution is to explore model-
free data-driven provisioning methods that are powered by
contemporary machine learning [7]–[9].

From a design perspective, NF (and/or link) migration is
studied in existing works to deal with the time-varying traffic
patterns and to alleviate network bottlenecks. In this paper, in-
stead of considering complete NF instance and link migrations,
we attempt to enforce the dynamic scaling of the network
service by initializing (and tearing down) new NF instances
along with already placed NF instances, to accomodate time-
varying traffic characteristics. For instance, the topology of the
network service in Fig. 1 can alternate between those in Fig. 1-
(a), Fig. 1-(b) and other topologies based on characteristics
of the network substrate and the time-varying traffic demand.
Although theoretically the topology design can ameliorate the
efficiency for some types of resources (e.g., function and link
provisioning costs), it can exacerbate other types of resources
(e.g., the routing cost and signaling overhead). Therefore,
three aspects of resources, namely routing overhead, function
provisioning cost, and link provisioning cost should be taken
into consideration.

In light of the discussion above, this work offers the
following contributions:
• We develop an end-to-end deep RL-based provisioning

mechanism to dynamically allocate network resources
based on the traffic pattern of the network service and
the network substrate;

• We propose a pre-processing technique that represents the
state space and action space of the considered problem.
The pre-processing technique provides an auxiliary net-
work transformation to extract end-to-end routing and NF
placement configurations for the action space;

• We consider a deep deterministic policy gradient (DDPG)
algorithm. Due to the multiple resource types with
strongly adverse effects and a sparse reward function,
the existing vanilla DDPG algorithm is shown to be
inefficient and unreliable. Thus, we enhance the DDPG
algorithm with an exploration procedure that utilizes
experiences learned from a perturbed optimal step-wise
solution.

The rest of this paper is organized as follows. Section
II gives an overview of related works. Section III describes
the system model under consideration. Section IV presents
the research problem formulation. Section V discusses the
deep RL framework for the proposed problem, which includes
the pre-processing stage and the model-assisted deep RL
algorithm. In Section VI, we conduct numerical performance
evaluation of the proposed deep RL scheme, followed by
concluding remarks of this study in Section VII.

II. RELATED WORKS

A. Joint Composition, Traffic Routing and NF Placement

Although several NF chain topologies express the same
network policy semantically, the embedding process for each
logical topology can yield different provisioning costs and
long-run characteristics in a non-trivial manner. Generally,
there are two approaches for the joint composition, NF place-
ment and traffic routing. The first approach is to decouple
the service composition (or topology design) from the NF
placement and routing process [1], [10]. However, such an
approach can be far from the globally optimal solution.
Mehraghdam et al. propose a language model that formalizes
an NFV-enabled multicast service [10]. Such language model
is general as it allows for service composition. However, the
addressed topological design aspect reduces to re-ordering the
NFs from lowest to highest traffic inflation factors to minimize
the required data rate of the NF chain. Mehraghdam et al.
extend their work to account for the service composition,
where a heuristic approach yeilds an extensive Pareto set of
the possible composition configurations of a service as well
as possible combinations of different services with respect to
different optimization objectives [1].

Another approach is to design a heuristic algorithm such
as a breadth-first search, where some composition operator
is included to minimize the function and link provisioning
costs [2], [3]. More specifically, Ye et al. jointly consider
the topology design and embedding, where they formulate
an integer linear program and develop a heuristic algorithm
under the assumption that NFs in a service chain can be
combined together [3]. The heuristic algorithm resembles an
iterative two-step search, which iteratively combines two NF,
and then performs embedding onto the physical substrate.
The algorithm eventually selects an NF chain topology that
minimizes the placement and routing cost. Beck and Botero
present a coordinated breadth-first algorithm that minimizes
the function and link provisioning costs, where the algorithm
attempts to find a path from the source to the destination while
being able to replicate NFs if needed [2]. Li et al. develop a
two-stage heuristic algorithm that addresses the composition
and embedding, where the location and functionality of the
substrate nodes and the inflation factor of network functions
are taken into consideration [11].

In the aformentioned works, the topology design and the
NF placement and routing processes are decoupled. More
recently, Coa et al. consider a genetic framework that designs
an overall NF forwarding graph for multiple traffic flows to
minimize the function and link provisioning costs and improve
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the acceptance ratio of services [12]. Jalalitabar et al. design a
heuristic algorithm for the NF placement and routing that takes
the dependence relationship between the NFs into account
[13].

The aformentioned works present model- or optimization-
based frameworks in which long-run provisioning costs and
considerations can be difficult to incorporate. Moreover, the
aformentioned works consider the joint composition, routing
and NF placement under the assumption of a fixed data rate
requirement for a service request.

B. Deep Reinforcement Learning based Dynamic Provisioning

Thanks to the recent success in deep RL, there is a re-
newed interest in the application of (deep) RL to networking
problems. More specifically, RL has been used to tackle
various traffic engineering problems that span routing, NF
placement/migration, and NF scheduling [14]–[21]. One of
the early works aims to maximize a network utility for a
general communication network with K end-to-end communi-
cation sessions [14]. A traffic engineering-aware exploration is
proposed which utilizes the DDPG algorithm with a prioritized
experience replay technique. Pei et al. study the NF placement
(or NF migration) problem in an NFV-enabled network under
a time-varying traffic pattern [22]. Due to the large solution
space, the authors divide the network into smaller regions
and use a double deep Q-network algorithm to select a small
number of potential NFV nodes. Troia et al. consider an NFV-
enabled metro-core optical network, represented as a multi-
layer network [17]. The goal is to maximize the number of
successfully routed NF chains, while minimizing the reconfig-
uration penalty, blocking probability and power consumption.
Gu et al. study the VNF orchestration and flow scheduling
for NFV-enabled network services, whereby a model-assisted
DDPG algorithm is used to aid in the convergence speed [16].
Qu et al. consider joint VNF migration and resource scaling in
the presence of non-stationary traffic [20]. First, they propose
a traffic parameter learning method based on change point
detection and Gaussian process regression to detect changes
in the stationarity of the traffic. Then, they propose an efficient
modified Q-learning algorithm with penalty-aware prioritized
experience replay to incorporate awareness of resource over-
loading penalty.

III. SYSTEM MODEL

A. Network Functions and the Network Service

Time is partitioned into constant durations referred to as
timesteps, indexed by τ. Let T denote the total number time
durations under considered time. We consider a unicast service
with time-varying traffic demand, expressed as

S = (u, t,V, d(τ)), τ ∈ (0,T] (1)

where u and t are the source and destination nodes, respec-
tively; V = { f1, f2, . . . , f |V |} represents the set of NFs that
need to be traversed in an ascending order for the source-
destination pair; d(τ) denotes the required transmission rate
at index τ in packet/s; Each NF fi, i = 1, 2, . . . , |V|, requires

an amount of processing resources of C( fi(τ)) at index τ in
packet/s. Depending on the operation semantics (which can
be specified a priori), some NF types can be deployed in a
parallel or sequential manner in geo-distributed NFV nodes.

B. Network Substrate

We are given a capacitated network substrate, G = (N,L),
where N and L are the sets of nodes and links, respectively.
Each physical link l (∈ L) has a residual transmission resource
at time τ, Bl(τ), τ ∈ (0,T], in packet/s. Each node n (∈ N ) has
a residual processing resource, Cn(τ), τ ∈ (0,T], in packet/s.
Here, Bl(τ) and Cn(τ) represent the residual resources while
taking into account the background traffic and the embedded
NF chain at time τ. Nodes can be either (i) switches that
are capable of forwarding traffic only (with Cn(τ) = 0), or
NFV nodes (e.g., commodity servers) that are capable of both
forwarding traffic and operating a set of NF instances. An
NFV node is capable of provisioning a number of NF instances
simultaneously as long as the available processing resources
satisfy the deployed NF processing requirements.

IV. PROBLEM FORMULATION

Given network substrate G and network service S with a
time-varying data rate requirement, we want to develop a dy-
namic joint composition, routing and NF placement framework
to minimize the function, link, and routing provisioning costs.
The system operates in a time-slotted fashion over a potentially
large time span, where certain dynamic decisions are taken at
each timestep. Due to the bursty and time-varying nature of the
data rate, altering the routing and NF placement configuration
at each timestep should be discouraged due to the cost of
setting up new NF instances.

The topology of an embedded NFV-enabled network service
can be modeled as a composition of several paths. Each path
emanates from the source to the destination, and traverses all
the required NF instances. Let all the possible paths for unicast
service S be given by P. Let P (∈ P) be the P-th path on
the network substrate that is activated to (partially) host the
service request.

Let xP
li
(τ) ∈ {0, 1} be a decision variable at time indexed

by duration τ, where xP
l0(τ) = 1 indicates that link l is used

to direct traffic from u to the P-th instance of the first NF
( f P1 ) for path P (∈ P), and xP

li
(τ) = 1 indicates that link l is

used to direct traffic from f Pi to f P
i+1. Correspondingly, define

κP
li
(τ) ∈ [0, 1] as a continuous flow variable that represents the

fraction of flow used in link l to direct traffic from f Pi to f P
i+1

such that

κPli (τ) =dP(τ)xP
li (τ),

τ ∈ (0,T], P ∈ P, l ∈ L, i ∈ Ω |V |0 (2)

where dP(τ) ∈ [0, 1] is a continuous decision variable that
represents the fraction of flow assigned for path P, and Ωn

m

denotes the set of integers from m to n (> m), i.e., Ωn
m ,

{m,m+1, . . . , n}. To meet the total required transmission rate,
we impose constraint∑

P∈P

dP(τ) = 1, τ ∈ (0,T]. (3)
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Define binary decision variable zPni(τ) ∈ {0, 1}, where zPni(τ)
= 1 indicates that node n hosts f Pi with an assigned fractional
resources of C( f Pi (τ)) ∈ [0, 1]. For each NF, to conserve the
distributive processing resource, we impose∑

P∈P

C( f Pi (τ)) = C( fi), τ ∈ (0,T], i ∈ Ω |V |1 . (4)

The overall data rate from all activated paths should not exceed
the link transmission rate, Bl(τ), i.e.,∑

P∈P

|V |∑
i=0

κPli (τ) ≤ Bl(τ), l ∈ L, τ ∈ (0,T]. (5)

Moreover, the overall rate of the NF instances that are placed
on an NFV node should not exceed the node processing rate
Cn(τ), i.e.,

|V |∑
i=1

∑
P∈P

C( f Pi (τ)) ≤ Cn(τ), n ∈ N, τ ∈ (0,T]. (6)

Objective function: Different logical service topologies and
embedding configurations can incur different routing and NF
setup costs. To route traffic that belongs to a service request, a
switch needs to add one routing entry in the forwarding table
that specifies the header and the next port (or physical link).
Therefore, for the routing overhead, we consider that each
physical link hosting the service request incurs an additional
cost of η1 [23]. The routing cost is expressed as

c1(τ) =

|V |∑
i=0

∑
l∈L

η1xli(τ), τ ∈ (0,T] (7)

where xli(τ) ∈ {0, 1} is a decision variable at time τ, with
xli(τ) = 1 indicating that xP

li
(τ) = 1 for some path P (∈ P),

and
xP
li (τ) ≤ xli(τ), τ ∈ (0,T], P ∈ P . (8)

The link and function provisioning costs can be expressed as

c2(τ) =

|V |∑
i=0

∑
l∈L

∑
P∈P

d(τ)
κP
li
(τ)

Bl(τ)
, τ ∈ (0,T] (9)

and

c3(τ) =

|V |∑
i=1

∑
n∈N

∑
P∈P

d(τ)
C( f Pi (τ))

Cn(τ)
zPni(τ), τ ∈ (0,T] (10)

respectively. We also consider the NF instance setup cost,
which is incurred only when an NF instance is initialized at an
NFV node. Let zni(τ) ∈ {0, 1} be a decision variable, where
zni(τ) = 1 indicates that function fi is initialized on node n.
Then, the NF setup cost can be expressed as

c4(τ) =
∑
n∈N

|V |∑
i=1

η2zni(τ), τ ∈ (0,T] (11)

where η2 is the NF setup cost which can include the instal-
lation cost and the respective signalling overhead from the
controller to the node, and∑

P∈P

zPni(τ) −
∑
P∈P

zPni(τ − 1) ≤ zni(τ), τ ∈ [0,T]. (12)

In summary, the optimization problem for the dynamic joint
composition, routing and NF placement problem with time-
varying data rate is expressed as

minimize
T∑
τ=0

4∑
k=1

ωkck(τ) (13a)

subject to:

∀τ ∈ (0,T], l ∈ L :
|V |∑
i=0

∑
P∈P

κPli (τ) ≤ Bl(τ) (13b)

∀τ ∈ (0,T], n ∈ N :
|V |∑
i=1

∑
P∈P

C( f Pi (τ)) ≤ Cn(τ) (13c)

(2), (3), (4), (8), (12). (13d)

The problem in (13) is an online constrained problem since
the data rate, d(τ), is revealed in an online manner, where the
objective is to minimize the long-run provisioning cost of the
time-varying service request. Knowledge of the traffic pattern
of service request and the background traffic is particularly
crucial for the NF setup cost (c4(τ)).

V. DEEP REINFORCEMENT LEARNING FRAMEWORK

A. Reinforcement Learning Background

We consider a standard RL setting consisting of an agent
interacting with an environment in the discrete timesteps in-
dexed by τ, referred to as learning steps. At each learning step,
the agent observes a set of states, produces a set of actions to
affect the states, and consequently receives a reward. Different
from other learning paradigms (e.g., supervised learning), RL
addresses a sequential decision making problem in a holistic
manner, whereby an agent needs to find a desired behaviour
(or policy) that maps the set of states to actions to maximize
both immediate and future rewards. Here we consider a fully-
observable environment where a single RL agent observes all
the states from the network substrate and network service.
Therefore, it is modeled as a Markov decision process with
state space S, action space A, initial state distribution Pr(s1),
transition probabilities Pr(sτ+1 |sτ, aτ), and reward function rτ
(: S × A → R). Let the (discounted) accumulation of future
rewards be the return (Rτ), defined as

Rτ =
∞∑
i=τ

ϑi−τri (14)

where ϑ ∈ (0, 1] is a discount factor that represents the present
value of future rewards. The larger ϑ, the more farsighted the
agent is, i.e., the more valued future rewards are. The agent
aims to find a policy mapping that maximizes Esτ [Rτ |sτ],
where E[·] is the mathematical expectation. At learning step τ,
the so-called action-value function (or Q-function) resembles
the expected return after taking action aτ while following
policy λ, defined as Qλ(sτ, aτ) = E[Rτ |sτ, aτ]. If policy λ
is deterministic (i.e., λ : S → A), the recursive Bellman
equation can be used to learn the action-value function as
follows,

Qλ(sτ, aτ) = E[rτ + ϑQµ(sτ+1, π(sτ+1))]. (15)
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In large-scale topologies, probing all the network elements
can be impractical, and one agent can impose a signaling
bottleneck. Thus, a practical approach is to re-formulate the
problem as a partially-observable MDP with single or multiple
DRL agents. In such settings, an agent does not view the
whole network substrate at one time. Therefore, it needs to
be equipped with an internal memory representation (often
implemented via a recurrent neural network) to combat the
partial observability effect (which induces a pronounced non-
Markovian impact on the problem setup). Such problem set-
tings require further studies.

B. Pre-processing Stage

The described problem requires an end-to-end solution,
whereby the design of service topology, placement of NFs,
and routing configuration on the network substrate should be
considered. Therefore, if approached naively, this problem can
lead to an explosion in the number of states (and actions)
for network substrates of a moderate size. A large number of
empirical studies on the properties of real network substrates
reveal that the average path length for a source-destination pair
is very small. This is due to the observation that real networks
tend to have a degree distribution with a power-law tail, which
is known as the small-world phenomena [24], [25]. In such
scale-free networks, the average path length is asymptotically
logarithmic in the number of nodes of the network substrate
(i.e., = O(log |N |)). Therefore, in practice, the average number
of edge-disjointed paths is small. Based on the aforementioned
observations and to have a compact learning representation,
we model an embedded service topology as a composition
of several NF placement and routing configurations from the
source to the destination.

To generate the routing and NF placement configurations,
we utilize an auxiliary multilayer transformation of the net-
work substrate [26]. We model the transformation as a directed
graph, GM = (NM,LM ), where NM ⊆ N × X is the set that
contains all nodes, in which node n (∈ N ) is present in a
corresponding layer x (∈ X); denote such node by nx . Set
LM ⊆ NM × NM comprises all intra-layer and inter-layer
edges. Intra-layer edges, LA = {(nx, vy) ∈ LM |x = y ∈ X},
represent the connections between the network elements in
each layer. Inter-layer edges, LI = {(nx, ny) ∈ LM |x , y ∈

X}, are used to encode the placement decisions in which a
traversal of an edge from one layer x (∈ X) to another layer
y (∈ X) maps to the processing of the xth NF instance in a
network service.

The auxiliary multilayer transformation is constructed as
follows.

1) Create |X| copies of network substrate G. Each
copy (Gi(N i,Li)) represents one layer, where i =
{0, . . . , |V|}.

2) Assign the source node to its corresponding node at layer
0 (= u0, u0 ∈ N0);

3) Assign the destination node to its corresponding node at
the last layer (= t |V | , t |V | ∈ N |V |);

4) For the first |V| layers, construct inter-layer edges from
layer i to layer i + 1 (l ← (ni, ni+1)) for each NFV node

(a) Network substrate (b) Service request

Node a in layer b

Fig. 2. A problem input: (a) A network substrate along with the permissible
NFs on each network element, and (b) the logical topology of a unicast service
request.

that can host fi (i.e., if ni ∈ Fi). The processing resources
of each inter-layer edge, l ← (ni, ni+1), is equivalent to
that of the corresponding NFV node ni .

Algorithm 1: Construction of multilayer network transfor-
mation and generation of several NF placement and routing
configurations.

1 Procedure multipleJRP(G, S);
Input : G, S = (u,D, f1, f2, . . . , f |V |, d)
Output: P

2 . Construction of multilayer transformation GM

3 {Gk(Nk, Lk)}
|V |+1
k=0 ← G(N, L);

4 u0 ← u (source node at layer 0 as source u);
5 t |V | ← t (destination node at layer |V| as destination t);
6 LI ← {};
7 for k = 0 : (|V| − 1) do
8 for nk ∈ Fk do
9 Add l ← (nk, nk+1) to LI ;

10 C(l) = C(nk);
11 end
12 end
13 . Populating P with virtual segment-disjoint

configurations
14 P ← {};
15 for i = 1 : V do
16 G

tmp
M ← GM ;

17 while ∃ ShortestPath(Gtmp
M ; u0, t |V+1 |) do

18 P
+
← ShortestPath(Gtmp

M ; u0, t |V+1 |);
19 Remove path for virtual segment fi– fi+1 from

G
tmp
M ;

20 end
21 end
22 Remove replicated path (or tree) configurations;
23 return P;

We provide an illustrative example of constructing the
auxiliary graph transformation and how service composition
is incorporated in Figs. 2 and 3. Fig. 2 illustrates a service
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(c)

(b)(a)

Fig. 3. The auxiliary network transformation for the problem input in Fig. 2
with a different path traversals from source to destinations in (a) and (b).
Activating both trees results in the logical topology shown in (c).

request of two NFs ( f1 and f2), where the source is n1
and the destination node is n4. We also have a network
substrate of 4 nodes that can host either NF type, both, or
neither. Fig. 3 illustrates the construction of the auxiliary
graph transformation. Since we have two NFs, the auxiliary
transformation has three layers. As NFV nodes n2 and n3
can host f1, we construct the inter-layer edges, n1

2 → n2
2 and

n1
3 → n2

3. Similarly, n1 and n2 can host f2. Thus, we construct
the inter-layer edges, n2

1 → n3
1 and n2

2 → n3
2.

Algorithm 1 summarizes the construction of the auxil-
iary transformation and the generation of routing and NF
placement configurations. With the auxiliary transformation,
a path traversal (while considering only the edge costs) from
the source to the destination represents a routing and NF
placement solution for the service in the original network
substrate graph. Here, we have an illustration of two different
path traversals in Figs. 3-(a) and 3-(b). Let a path in the
network substrate from fi to fi+1 be called a virtual segment.
Using the multilayer transformation, we find all the virtual
segment-disjoint paths as shown in lines 13-22 in Algorithm 1.

Combining several paths yields a variety of service topolo-
gies and embedding configurations. The desired behavior is to
have a dynamic service topology that changes depending on
the traffic pattern of the service request to optimize objective
function (13a). That is, the service topology should grow and
shrink in size (i.e., activate and tear down temporary NF
instances), while taking the model-free traffic patterns into
account. For example, activating both paths in Figs. 3-(a) and

3-(b) results in the service topology in Fig. 3-(c).

C. States, Actions, and Reward Function

Critical to the success of any RL framework is the design of
accurate yet compact state space and action space that capture
the relevant features in the environment and accurate reward
structure of the problem. In what follows, we describe the state
space (S), action space (A), and reward function.

Action space: Given the output of Algorithm 1, the action
space is to choose which paths to activate and what the
assigned proportion for each activated path from P, i.e.,
aτ = {dP(τ)}P∈P , where

∑
P∈P dP(τ) = 1 and aτ ∈ A.

State space: At the beginning of timestep τ, the agent should
proactively adjust the service topology and the embedding
solution of the service by relying on the available states.
Therefore, the state space is comprised of

1) the data rate of the previous timestep (d(τ − 1));
2) the data rate for the current timestep (d̂(τ));
3) the utilization ratio of the network elements of all con-

cerned paths in the previous timestep, i.e.,∑
P∈P

dP |l∈P(τ − 1)
Bl(τ − 1)

, ∀l ∈ L ∩ P (16)

and ∑
P∈P

V∑
i=1

C( f P |n∈Pi (τ − 1))
Cn(τ − 1)

, ∀n ∈ N ∩ P; (17)

4) the path allocation of the previous timestep (aτ−1).
Reward function: The reward is to first maximize the

additive inverse of the cost function in (13a). Second, to
incorporate the constraints in (13b) and (13c), we penalize
the reward function when a resource violation occurs in the
physical links or NFV nodes. That is,

rτ = −(
4∑

k=1
ωkck(τ) +

∑
l∈L

ψ ′l +
∑
n∈N

ψ ′n), τ ∈ [0,T] (18)

where ψ ′
l
∈ {0, ψl} and ψ ′n ∈ {0, ψn} are penalty factors,

such that ψ ′
l
= ψl and ψ ′n = ψn are associated with violating

constraints (13b) and (13c), respectively.
The number of network elements of all concerned

paths dominates the size of the state space, i.e., |S| =
R(2+ |L∩P |+ |N∩P |+ |P |). The size of the action space is the
number of concerned paths, i.e., |A| = R |P | . Without proper
generalization, the sample complexity is primarily dependent
on the cardinality of the state-action space [27]. Therefore,
the training can become cumbersome even for moderate-
sized networks, especially without generalization capability
and enhanced exploration procedure.

The reward structure exhibits strongly conflicting objectives,
which can hinder an efficient exploration in the learning
algorithm. Moreover, the rewards have varying degrees of
sparsity. For example, the reward due to the routing cost (7) is
only observed when a path activates/deactivates, which occur
when dP(τ) ∈ {0, 1}, P ∈ P. A more sparse event is when a
new NF instance is initialized at an NFV node. Therefore, we
have a reward structure that is sparse and more sensitive to
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certain changes in the action space. One potential approach to
tackle the challenges is to perform reward engineering, i.e., to
smooth and shape the reward function. In our case, shaping the
reward can further hinder the exploration. Moreover, a shaped
reward does not accurately reflect the intended behavior, e.g.,
a smooth penalty for the resource violation can push the
utilization ratio of the physical links and NFV nodes to certain
inadvertent levels. Therefore, to tackle the aformentioned
challenges, we propose a model-assisted deep RL algorithm
as follows.

D. Deep RL Algorithm (DDPG)
For RL problems with a large state space, the use of non-

linear function approximators is needed. Prior to the work of
Mnih et al. [28], the use of deep neural networks (or generally
non-linear functions) as parameterized function approximators
for learning the action-value function was avoided due to
the instability in the learning process. Mnih et al. proposed
the deep Q-network (DQN), which can learn the action-
value function with large state space and small discrete action
space. This success was achieved with two techniques, namely
through (i) the use of an off-policy replay buffer to break the
correlations between the sequential samples in the learning
process, and (ii) the use of an earlier delayed replica of the
primary Q-network (called the target network) to stabilize
the learning process [28]. The replay buffer provides the
ability to visit previous experiences more than once, rendering
such an approach more sample-efficient than other on-policy
algorithms.

Our proposed problem is online control with a continuous
action space. In continuous action spaces, we need to find
a policy that optimizes the action space at every timestep
through an iterative optimization process. Discrete learning
algorithms, such as Q-learning and DQN, cannot be applied
directly. In our context, a discretization of the action space
is not practical as the action space can grow exponentially
for networks of moderate size. Recently, Lillicrap et al. adapt
the DQN to the continuous action domain through the use
of an off-policy actor-critic architecture with DDPG learning
algorithm [29].

Consider an approximate action-value function parameter-
ized by θQ (Q(sτ, aτ |θQ)). Such function can be optimized
by minimizing the loss function,

L(θQ) = E[(Q(sτ, aτ |θQ) − yτ)
2] (19)

where yτ = rτ + ϑQ(sτ+1, aτ+1 |θ
Q) represents the expected

return.
The DDPG algorithm maintains a parameterized actor pol-

icy (µ(s |θµ)) and a parameterized critic (Q(sτ, aτ |θQ)) in
a primary network. The actor policy maps the states to a
continuous action space. The parameterized critic function is
learned using the Bellman equation as in (19). The actor policy
is updated by optimizing the expected return from the start
through the chain rule [29],

∇θµ H ≈ E
[
∇θµQ(s, a)|θQ)|s=sτ,a=µ(sτ |θµ )

]
= E

[
∇aQ(s, a)|θQ))|s=sτ,a=µ(sτ )∇θµ µ(s |θµ)|s=sτ

]
.
(20)

Step-wise
optimization

Noise
Generator

+

Critic

Primary Actor

Actions
States

Choose
secondary
actor with

small decaying
probability

Reward

Secondary Actor

Fig. 4. The modified model-assisted DDPG algorithm.

For stability, the DDPG algorithm maintains a target net-
work which is a replica of the primary network with ac-
tor policy µ′(s |θµ

′

) and critic Q′(sτ, aτ |θQ
′

). The weights
of the target network are set to slowly track the primary
network’s weights such that θQ

′

= υθQ + (1 − υ)θQ′ , and
θµ
′

= υθµ + (1 − υ)θµ′ , where υ � 1. Parameter υ represents
a tradeoff between the stability and the rate of the learning
process. A very small υ greatly stabilizes the learning process
at the expense of slowing the learning process. It merits to
mention that the use of the action-value function (as a proxy
to learn the optimal policy) provides a generalization capability
where the agent can generalize new state-action pairs based
on previously experienced states.

Model-assisted exploration – The exploration procedure
can be treated independently from the learning algorithm
because the DDPG is an off-policy algorithm. In the vanilla
DDPG algorithm [29], a perturbed exploration policy, µ̃(sτ),
is constructed by adding a temporally correlated noise process
directly to the action space, i.e., µ̃(sτ) = µ(sτ) + n, where
n ∼ OU(0, σ2) is the Ornstein-Uhlenbeck process. In each
episode, the exploration process will produce a different action
for the same state since the (correlated) noise is independent
of the current state, sτ . Such behavior is detrimental to our
problem. A properly structured, state-dependent exploration
methodology is to inject some noise directly to the parameters
of the actor’s deep neural network at the beginning of an
episode, such that θ̃µ̃ = θµ + n, where n ∼ N(0, σ2

n) and θ̃µ̃ is
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Algorithm 2: Model-assisted DDPG-based learning algo-
rithm

1 Generate set of routing and NF placement configurations
for Sr (using Algorithm 1);

2 Randomly initialize critic network Q(s, a|θQ) and actor
network µ(s |θµ);

3 Initialize target network Q′ and µ′ with weights
θQ
′

← θQ, θµ
′

← θµ;
4 Initialize replay buffer R;
5 for e = 1 : M do
6 Receive initial observation states s1;
7 Create a perturbed actor network such that

θ̃µ̃ = θµ +N(0, σ2
n);

8 for t = 1 : T do
9 if U(0, 1) ≤ ε then

10 Select actions at by solving (13);
11 Add noise to action (at = at +N(0, σe

n ));
12 end
13 else
14 Select actions at from perturbed actor

network µ̃;
15 end
16 Execute actions at , and observe reward rt and

new states st ;
17 Store transitions (st, at, rt, st+1) in R;
18 Sample a random mini-batch of N transitions

(si, ai, ri, si+1) from R;
19 Set yi = ri + γQ′(si+1, µ

′(si+1 |θ
µ′)|θQ

′

);
20 Update critic by minimizing loss function using

(19);
21 Update the actor policy using the sampled policy

gradient using (20);
22 Update the target networks:

θQ
′

← τθQ + (1 − τ)θQ
′

θµ
′

← τθµ + (1 − τ)θµ
′

23 end
24 Decrease ε if bigger than zero (ε ← ε∆ if ε > 0);
25 end

the perturbed actor policy [30]. Parameter σn can be controlled
by measuring its induced variance on the action space [30].
Moreover, to aid the exploration process, we guide the learning
algorithm with some domain-knowledge as follows. With a
small decaying probability (ε), choose a perturbed action
by invoking a step-wise version of the defined optimization
problem in (13), which can be solved by Gurobi solver.

Algorithm 2 summarizes the model-assisted DDPG-based
learning algorithm. First, using the proposed pre-processing
stage, we generate a set of routing and NF placement configu-
rations for the service request (in line 1). Then, we randomly
initialize the primary and secondary actor and critic deep
neural networks, and we initialize the replay buffer (lines 2-
4). At the beginning of each episode, we create a perturbed
actor network by injecting Gaussian noise to the parameters

of respective deep neural network (in line 7). Then, for
each timestep, we select an action vector from either the
perturbed actor policy or the perturbed step-wise solution with
probability 1 − ε and ε , respectively (in lines 9-15). The
selected action vector is executed in the network substrate,
for which a reward is observed, and new states are produced
(in line 16). Then, we store the previous transition tuple (or
experience), namely (st, at, rt, st+1), in the replay buffer (in
line 18). Here, we sample several transitions at random from
the replay buffer to break the correlations caused by sequential
experiences, and update the critic network by computing the
loss function using (19) (in line 20), and we update the actor
network using 20 (in line 21). Finally, we slowly update the
target network parameters to track the primary network (in
line 22). At the end of each episode, we decrease step-wise
exploration factor ε (in line 24).

Fig. 4 provides a pictorial representation of the main com-
ponents in the model-assisted DDPG framework. Here, we
have two deep neural networks that correspond to the actor
and critic, respectively. The actor network takes the states as
input and produces an action vector. For the actor network,
we apply a Softmax layer at the output layer to produce an
action vector that sums up to unity. The critic network takes
the states and actions as input and produces one output that
corresponds to the action-value function (Q(sτ, aτ)). We also
have a temporary actor that produces the step-wise solution
and is selected to act with small decaying probability ε .

VI. PERFORMANCE EVALUATION

In this section, we numerically evaluate and analyze the per-
formance of the proposed model-assisted deep RL algorithm.
To evaluate the efficiency of the proposed approach, we use
two benchmarks, namely step-wise optimization and vanilla
DDPG algorithm. In the step-wise optimization, we run an in-
stantaneous version of (13) at each decision epoch to maximize
the instantaneous reward. The vanilla DDPG algorithm does
not utilize the domain-based exploration method as described
in Subsection V-D. That is, for the vanilla DDPG algorithm,
we omit lines 9-12 from Algorithm 2.

Both learning algorithms employ 2 hidden feed-forward
neural network layers with 32 nodes for both the actor and
the critic. Also, we use a leaky rectifier (ReLU) as activation
functions in the hidden layers. The learning rates of the actor
and critic are 10−4 and 10−3, respectively. The discount factor
(ϑ) and the learning rate (υ) are set to 0.99 and 0.001,
respectively. The memory and batch sizes are set to 106 and
64, respectively, and the variance of the action noise (σ2

n) is
set to 0.1. For the model-assisted DDPG algorithm, we set the
probability of invoking the model-based solution to ε = 0.08
with a decaying factor of ∆ = 1.001.

For the traffic pattern of network services, we utilize an
open-source traffic trace that is collected and maintained by
the Widely Integrated Distributed Environment research group
[31]. The traffic trace is collected from a 96-hour traffic on four
consecutive days in 2019. We extract the HTTP traffic (port
443) from the raw data packet trace. Based on the timestamp
of each packet arrival, we sample the number of packets every
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Fig. 5. (a) A random topology with 30 nodes that is generated using the
Barbási–Albert preferential attachment model; (b) HTTP-type traffic trace.

10 minutes as shown in Fig. 5-(b). Here, the traffic rate varies
from 5 to 65 Giga packet/s.

For the network substrate, we use the Barbási–Albert pref-
erential attachment model to generate scale-free random net-
works [25] (see Fig. 5-(a)). The transmission and processing
resources are randomly distributed between 25 and 55 Giga
packet/s. We consider that all nodes can be NFV nodes,
where each NFV node can host 2/3 of the possible NF types
at random. The transmission and processing resources are
randomly distributed between 25 and 55 Giga packet/s.

First, we conduct a case study on the performance of the
proposed algorithm and the two benchmarks over a random
network substrate with 30 nodes (|N | = 30). We generate a
service request with one NF from node 23 to node 15. Fig. 6
shows the average reward per episode for the considered prob-
lem setup with two different randomization seeds in Figs. 6-(a)
and 6-(a), respectively. As shown, the proposed model-assisted
DDPG algorithm converges to a solution that outperforms
the step-wise optimization, implying that the temporal traffic
patterns are learned and harnessed to minimize the NF setup

Fig. 6. Average reward per episode of the proposed model-assisted DDPG
algorithm compared to the step-wise optimization and the vanilla DDPG
algorithm while varying the randomization seeds in (a) and (b) over a random
topology with 30 nodes.

cost as the traffic rate varies. More specifically, it is observed
that the proposed algorithm learns to activate a new path (or
install a new NF instance) only due to the long-run time-
varying characteristics rather than any short-term increase in
the traffic demand.

Comparing the learning algorithms, we observe that the
model-assisted algorithm is more robust and is faster to con-
verge and stabilize. In Fig. 6-(a), the model-assisted algorithm
stabilized after episode 400, whereas the vanilla algorithm
stabilized after episode 750. In Fig. 6-(b), where only the
randomization seed is changed, the performance of the vanilla
DDPG kept fluctuating and did not converge until episode
4000. This experiment demonstrates how brittle is the Vanilla
DDPG algorithm, as it has been observed to be very sensitive
to hyperparameters. The brittleness and hyper-sensitivity of the
vanilla DDPG algorithm have been reported in other studies
[32], [33].

Next, we analyze the performance of the trained agent,
i.e., the proposed model-assisted algorithm after convergence.
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Fig. 7. Performance of the proposed algorithm and the stepwise optimization
over a random network substrate as the network size and the number of NFs
vary in (a) and (b), respectively.

Similarly, we use the Barbási–Albert method to generate
random network substrates. We repeat the experiment over
different instantiations of the network substrate to measure
the average performance. We generate a service request from
node 23 to node 15 with varying number of NFs. Due to the
extreme brittleness of the Vanilla DDPG algorithm, hereafter
we only compare the trained model-assisted agent with the
step-wise optimization.

Fig. 7-(a) shows the average provisioning cost of the trained
agent and the step-wise optimization, normalized by the peak
value, as the network size varies, while the number of NFs is
set to 1. We observe an increasing trend in the provisioning
cost for both algorithms due to the increase in the number
of path lengths for the service request. We also observe an
approximately constant performance gap between the model-
assisted algorithm and the step-wise benchmark since the
number of NFs does not vary for the same service request.

Fig. 7-(b) shows the average normalized provisioning cost
of the trained agent and the step-wise optimization as the
number of NFs varies. Here, the gap between the model-
assisted algorithm and the step-wise optimization widens as
the number of NFs increases. This is because the event of
setting up and tearing down NF instances becomes more
frequent for the step-wise optimization as the number of NFs
increases, thereby the inefficiency of the step-wise benchmark
becomes more pronounced.

VII. CONCLUSIONS

In this paper, we develop a deep RL based dynamic
provisioning mechanism for NFV-enabled services. We take
into consideration the transmission and processing resources,
the NF setup cost, and the routing overhead. The deep RL
approach relies on an actor-critic architecture with DDPG
algorithm. However, incorporating such considerations ren-
ders the vanilla DDPG algorithm incapable of consistently
achieving the desired behavior due to its notorious sensitivity
to hyperparameters. Therefore, to aid with the exploration
process and to speed up the convergence of the learning
algorithm, we propose to leverage and integrate domain-based
knowledge obtained from a step-wise formulation with the
deep RL algorithm. Numerical results demonstrate that the
deep RL approach outperforms the step-wise formulation,
which is expected since deep RL algorithms find ways to
optimize the long-run objective. Moreover, results show the
modified DDPG algorithm reduces the sensitivity and brittle-
ness observed in the vanilla DDPG algorithm.
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