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Abstract—We consider a single-input-multiple-output (SIMO)
system over generalized and composite fading channels using the
mixture Gamma (MG) distribution in the presence of impulsive
noise, which is modeled by Middleton’s Class-A (MCA) and
ǫ-mixture noise models. First, we develop a simple and effec-
tive information theoretic approach to determine the optimal
number of components for the MG distribution based on the
Bayesian information criterion. We then derive novel pairwise
error probability (PEP) expressions for the considered system
with maximal-ratio combining and selection combining at the
receiver. The derived PEP expressions involve finite single-fold
integrals, which are further simplified to rather more tractable
expressions applicable for the special case of integer values of the
scale parameter βk . Furthermore, we provide analytical tractable
expressions for the average channel capacity under the impulsive
noise assumption for the considered system. Analytical and Monte
Carlo simulation analysis are presented to validate the analytical
results.

Index Terms—Generalized fading channels, impulsive noise,
pairwise error probability, SIMO

I. INTRODUCTION

I
N a typical mobile radio environment, the received sig-
nal undergoes small-scale power fluctuations (microscopic

fading) superimposed on large-scale signal power fluctuations
(shadowing or macroscopic fading). When both macroscopic
and microscopic fading are present, they can be modeled
by composite fading distributions. A popular example of
such composite fading channels is the Nakagami/Lognormal
(NL), where the density function is obtained by averaging
the instantaneous Nakagami-m fading average power over
the conditional probability density function (PDF) of the
Lognormal shadowing. However, this results in a complicated
expression for the PDF that has no closed form [1].

Several generalized distributions are proposed to model
or approximate composite fading channels, such as the
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K-distribution [2], KG-distribution [3], Rayleigh/Inverse-
Gaussian (RIGD) [4], G-distribution [5], Weibull/Gamma [6],
κ−µ/Gamma [7], α−κ−µ extreme distribution [8], mixture
of Gaussian (MoG) [9], et al. The mixture Gamma (MG)
distribution, proposed in [10] by Attapattu et al., accurately
approximates several generalized and composite fading models
via Gaussian quadrature approximations. Performance metrics
based on the MG distribution are often analytically tractable,
offering closed-form solutions to support analysis. Moreover,
high approximation accuracy can be achieved by increasing
the number of summed mixture components.

Diversity techniques, which exploit multiple copies of the
transmitted signal, have been widely investigated to overcome
detrimental effects of wireless channels. Most of the reported
results in the literature assume additive white Gaussian noise
(AWGN) in each diversity branch. Although this assumption
incorporates the effect of background thermal noise, it ignores
the impact of the impulsive noise caused by atmospheric, man-
made partial discharge, switching effect, and electromagnetic
interference, et cetera, [11], [12]. The Middleton’s Class-A
(MCA) model [13] is one of the most accurate statistical-
physical models for narrowband impulsive noise. There are
many works in the literature that employs the MCA model
to characterize impulsive noise in wireless communication
systems, c.f., [11], [12], [14]–[19]. Expressions for the bit
error probability (BEP) in selection combining (SC) and max-
imal ratio combining (MRC) receivers over Rayleigh fading
channel with MCA noise were derived in [20]. In [11], the
same channel model was considered to derive the BEP for
different combining schemes, including SC and MRC. The
BEP over Rician channel in the presence of MCA noise was
derived for both SC and equal gain combining (EGC) in [15].
Moreover, since the MCA model contains an infinite number
of noise states, a relatively tractable model, widely known
as ǫ-mixture noise model, with two terms and two tunable
parameters is considered in [14], [21]. Although there have
been considerable research efforts on diversity analysis over
conventional multipath fading channels, such as Rayleigh and
Nakagami-m, to the best of our knowledge, there exist no
reported results that incorporates generalized or composite
fading channels along with MCA or ǫ-mixture noise.

In this paper, we aim to fill this research gap and investi-
gate the performance of single-input-multiple-output (SIMO)
system over generalized and composite fading channels with
MCA and ǫ-mixture noise. Following [10] and [22], we
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express numerous generalized and composite fading channels,
such as the NL, KG, η − µ, κ− µ, Lognormal, and Weibull,
by the MG distribution. The contributions in this paper are
multifold, and can be summarized as follows:

• We propose a simple and effective information theoretic
approach to determine the optimal number of components
for the MG distribution based on the Bayesian informa-
tion criterion (BIC).

• We derive analytical pairwise error probability (PEP)
expressions that involve finite single-fold integrals as-
suming MCA and ǫ-mixture noise with MRC and SC.
Furthermore, more tractable PEP expressions are derived
for the case of integer values of the involved parameter
βk.

• We derive closed-form expressions for the average chan-
nel capacity assuming MCA and ǫ-mixture noise with
MRC and SC.

The remainder of the paper is organized as follows: Section II
provides a brief introduction to the two impulsive noise mod-
els. In Section III, we introduce the MG distribution. Then,
the BIC is proposed as an approach to determine the optimal
number of components for numerous MG-based generalized
and composite fading models. The SIMO system model with
MCA and ǫ-mixture noise, followed by the derivation PEP
and average channel capacity expressions, are introduced in
Section V. Analytical and Monte Carlo simulations are pre-
sented in Section VI, followed by some concluding remarks
in Section VII.

II. MIDDLETON’S CLASS-A AND ǫ-MIXTURE IMPULSIVE

NOISE MODELS

Following [11], we assume that the noise at the receiver is
modeled as n = ng + ni, where ng, ni are the background
Gaussian noise with variance σ2

g , and the impulsive noise with
variance σ2

i , respectively. When the number of independent
active sources, namely K , is large enough, the occurrences of
interference would follow a Poisson distribution, i.e.

Pr(K = k) =
e−AAk

k!
, (1)

where A is the impulsive index that describes the average
number of impulses during some interference time [11], and
it is typically in the range of 10−4 to 0.5. As such, the PDF
of the MCA noise can be expressed as [21]

fn(x) =
∞∑

k=0

Pr(K = k)fn|K=k(x|k)

=

∞∑

k=0

e−AAk

k!
√

2πσ2
k

exp(− x2

2σ2
k

), (2)

In (2), σ2
k = kA−1+Ξ

1+Ξ σ2, where σ2 = N0

2 is the power of

n, Ξ =
σ2
g

σ2
i

is the Gaussian Factor, which resembles the ratio
of the variances of the background Gaussian component the
impulsive component, and it is typically in the range of 10−5

to 1. Although this distribution includes an infinite summation,
it is completely described by three parameters, σ2, Ξ, andA.
As A and Ξ tends to zero, the noise becomes more impulsive.

In the analysis hereafter, we truncate the MCA model to
C + 1 components. In [13], Zabin and Poor proposed an
expectation-maximization (EM) based method to estimate Ξ
and A. The method relies on the iterative maximization of
the log-likelihood function of the envelope of the MCA noise,
where the envelope is expressed as an infinite summation of
weighted Rayleigh distributions.

Another popular impulsive noise model is the ǫ-mixture
[21], which resembles a Gaussian-Gaussian mixture model,
where the the PDF is expressed as

fn(x) =
1− ǫ
√

2πσ2
g

exp(− x2

2σ2
g

) +
ǫ

√

2πσ2
i

exp(− x2

2σ2
i

), (3)

where ǫ denotes the fraction of time for which the impulsive
noise occurs, with 0 < ǫ < 1. The ratio of the variances of
the impulsive component to the Gaussian component is given
by ξ =

σ2
i

σ2
g
. Here, the power of n is given by

σ2 =
N0

2
= (1− ǫ)σ2

g + ǫσ2
i . (4)

In this context, given a reference noise process, Gaussian
mixture based EM estimation technique can also be utilized
for the estimation of ǫ, σ2

g , and σ2
i [9]. It is worth noting that

although a truncated two-term MCA model has been shown
to accurately represent the infinite MCA noise model when A
and Ξ are small enough, the truncated two-term MCA model
remains as a subset of the ǫ-mixture noise model, as shown
in [21].

III. APPROXIMATING FADING MODELS WITH THE MG
DISTRIBUTION

The MG distribution was shown to accurately approximate
numerous generalized and composite fading channels, such as
the Nakagami/Lognormal (NL) [10, eq. (5)], KG [10, eq. (8)],
η − µ [10, eq. (10)], and κ − µ [10, eq. (17)]. The PDF of
the MG distribution consists of a convex linear combination
of Gamma distributions as

fγ(x) =

G∑

j=1

αj

γ
(
x

γ
)βj−1 exp(−ζj

x

γ
), (5)

where G denotes the number of mixture components, αj , j =
0, .., G, is the mixing coefficient of the jth component having
the constraints 0 ≤ αjΓ(βj)

ζβj
j

≤ 1 and
∑G

j=1
αjΓ(βj)

ζβj
j

= 1,

where Γ(.) is the gamma function [23, eq. (8.310.1)]. The
scale and shape parameters of the jth component are βj and
ζj , respectively, while γ = Eb

N0
= E[γ] is the average SNR per

bit, where E[.] denotes expectation.
In this paper, we determine the appropriate number of

components for the MG distribution. In [10], the number of
components is selected manually such that the mean-square
error (MSE) or Kullback-Leibler (KL) divergence between the
actual distribution and the MG is below a predefined threshold.
This method requires determination of a suitable target thresh-
old empirically or by means of Monte Carlo simulations which
may be a tedious task to accomplish. Choosing a small number
of components yield an inaccurate representation, whereas a
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large number would unnecessarily increase the complexity of
the distribution and may cause overfitting. Instead, we pro-
pose the use of a simple yet effective unsupervised criterion,
named the Bayesian information criterion (BIC), which was
introduced by Gideon Schwarz in [24].

Let x = {x1, ..., xz , ..xN} correspond to N independent
and identically distributed (i.i.d.) samples, drawn from any
of the actual aforementioned SNR fading models, then the
approximation methods used in [10] and [22] rely on the
maximization of the likelihood function, Pr(x|θ̂, G), where
θ̂ = (α̂1, α̂2, ..., α̂G, β̂1, β̂2, ..., β̂G, ζ̂1, ζ̂2, ..., ζ̂G) are the es-
timated parameters and G is the corresponding number of
components. The BIC is an asymptotic approximation to
the transformation of the Bayesian a posteriori probability,
Pr(θ̂|x, G). As such, in a large-sample setting, the number
of components determined by the BIC is optimal from the
perspective of the Bayesian posterior probability. In addition,
the BIC does not rely on the specification of prior distributions
of θ̂, but only on the log-likelihood function, which can
be readily achieved. For a candidate model with complexity
labelled by G components, the log-likelihood function is
expressed as

L(MG)(θ̂|x, G) =

N∑

z=1

ln

[ G∑

i=1

α̂ix
β̂i−1
z exp(−ζ̂ixz)

]

. (6)

The corresponding BIC estimate can be computed as

BICG = −2L(MG)(θ̂|x, G) +G lnN. (7)

It can be seen that the BIC penalizes the model complexity by
adding the regularization coefficient, G lnN . Here we select
the candidate model satisfying the minimum BIC estimate or
equivalently the asymptotically maximum Bayesian posterior
probability as

Gopt = argmin
G∈N

BICG. (8)

Fig. 1 depicts the BIC versus the number of components
of various generalized and composite MG-based fading chan-
nels. The corresponding optimal number of components Gopt,
indicated in the legend, will be adopted in the simulations and
numerical results hereafter, and it will be denoted by G.

Another possible criterion is the Akaike information crite-
rion (AIC) [25], which can be computed as

AICG = −2L(MG)(θ̂|x, G) + 2G. (9)

The AIC serves as an asymptotic unbiased estimator of the
KL divergence between the actual distribution and the MG
distribution. We point out that the BIC tends to be more
penurious as compared to the AIC, i.e. the BIC favors model
candidates with smaller G, since G lnN > 2K for N > e2.

Here it merits a mention that the BIC approach does not add
a considerable computational overhead to the adopted param-
eter estimation techniques, namely using Gauss-Hermite and
Gauss-Laguerre methods [10]. Classically, the computation
required for the weights and abscissas of the Gauss-Hermite
and Gauss-Lageurre polynomials require O(n2) operations
[26], where O(.) is the big Oh notation, resembling an upper
bound on the runtime of the algorithm [27]. In more recent

Number of Components, K
0 5 10 15 20 25 30 35 40 45 50

Lo
g

1
0
(B

IC
 -

 B
IC

o
p

t +
 1

)

100

101

102

103

104

105
Model Selection for mixture Gamma based Fading Channels

(NL) (m=5.0,λ=2.0 dB) Kopt=4

(KG) (m=5.0,k=2.0) Kopt=12
(η-µ) (η=3.5,µ=15.0) Kopt=17

(κ-µ) (κ=1.5,µ=2.5) Kopt=10

Figure 1. Normalized BIC versus number of components for various
generalized and composite MG-based fading channels.

works, the computational complexity for the weights and
abscissas of the respective polynomials is reduced to O(n)
operations [28], [29]. Furthermore, the computation of the
BIC measure for each G requires a only one vectorized
computation as governed by (7).

IV. PERFORMANCE ANALYSIS

A. System Model

Consider a point-to-point communication scenario with a
multi-link channel having L i.i.d. slowly varying and flat
fading channels hl, l = 1, .., L . The received signal copy
via lth branch is given by

rl = hl s+ nl, (10)

where s ∈ S is the transmitted symbol belongs to the con-
stellation S, with an average signal energy Eb = E[|s|2] = 1,
nl is the noise impaired in lth receiver branch, following the
MCA noise model, i.e., nl ∼ ∑∞

k=0
e−AAk

k! CN (0, σ2
k), with

σ2
k = kA−1+Ξ

1+Ξ σ2, where σ2 = N0 is the total noise variance1.
Here the power gain, γl = γh2

l , of the lth channel is modeled
by MG distribution as discussed in Section III, where γ = Eb

N0
.

In the following subsections, we derive expressions for the
PEP and average channel capacity for both MRC and SC
schemes.

B. Pairwise Error Probability

Although the L2-norm detection scheme is suboptimal for
the case of impulsive noise, it is considered in our analysis due
to its versatile application and low computational complexity.
For a single branch, the L2-norm detector selects the most
likely symbol using

ŝ = min
s̃∈S

||rl − hl s̃||2, (11)

1Although, not explicitly derived, extending the herein analysis to ǫ-mixture
noise is straightforward, where nl ∼ (1 − ǫ) CN (0, σ2

1
) + ǫ CN (0, σ2

2
) as

in Section II, with σ2 = N0 = (1− ǫ)σ2
g + ǫσ2

i .
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where s̃ ∈ S denotes a candidate symbol in the constellation
S.

1) Pairwise Error Probability for MRC: It follows that we
can express the conditional PEP between any two symbols
ŝ and s ∈ S for the lth single branch as

P
(l)
PEP (d|γl) =

C∑

k=0

e−AAk

k!
Pr(

||r − hŝ||2
σ2
k

<
||r − hs||2

σ2
k

),

(12)
where C + 1 is the number of components in the MCA noise
model, d denotes the Euclidean distance between s and ŝ.
From (12), the conditional PEP of the lth branch is thus written
as

P
(l)
PEP (d|γl) =

C∑

k=0

e−AAk

k!
√

2πσ2
k/2

∫ ∞

√

γld
2

2

exp(− x2

2σ2
k/2

) dx,

(13)
which can be solved as

P
(l)
PEP (d|γl) =

C∑

k=0

e−AAk

k!
Q(

√

γld2

σ2
k

), (14)

where Q(.) is the Gaussian Q-function [1, eq. (4.1)].

The unconditional pairwise error probability can be derived
by averaging P (l)(d|γl) over the lth fading channel, i.e.
P (l)(d) = Eγl

[P (d|γl)], yielding

P
(l)
PEP (d) =

C∑

k=0

G∑

j=1

e−AAkαj

k! γβj

∫ ∞

0

xβj−1

× exp(−ζjx

γ
)Q(

√

xd2

σ2
k

) dx. (15)

Using [30, eq. (11)] and [30, eq. (12)], we re-write (15) as

P
(l)
PEP (d) =

C∑

k=0

G∑

j=1

αj

2
√
π

e−AAk

k!γβj

∫ ∞

0

xβj−1

×G 1,0
0,1 (

−,−
0, | ζjx

γ
)G 2,0

1,2

(

−,1

0, 12

∣
∣
∣
∣
∣

xd2

2σ2
k

)

dx, (16)

where G(.) is the Meijer’s G-function [30, eq. (18)]. It is noted
that (16) is the Mellin transformation of the product of the two
Meijer’s G-functions. Therefore, using [30, eq. (21)] and after
some manipulations, we obtain

P
(l)
PEP (d) =

C∑

k=0

G∑

j=1

αj
e−AAk

√
π(k!)

(
σ2
k

γd2
)βj

× 22βj−1G 1,2
2,2 (

1−βj,
1
2−βj

0,−βj
| 2ζjσ

2
k

γd2
), (17)

where by using [30, eq. (17)], (17) can be re-written as

P
(l)
PEP (d) =

C∑

k=0

G∑

j=1

αjA
k

eAk!
(
σ2
k

2γd2
)βj

Γ(2βj)

Γ(1 + βj)

× 2F1(βj ,
1

2
+ βj , 1 + βj;

−2ζjσ
2
k

d2γ
), (18)

where 2F1(., ., .; .) is the Gauss hypergeometric function [23,
eq. (9.113)].

For the MRC scheme, the received signal copies are co-
herently weighted and summed up in order to maximize the
instantaneous output SNR, where the total instantaneous SNR
at the output of the MRC method is given by

γΣ =

L∑

l=1

γl. (19)

Generally, the PEP for the MRC scheme can be realized via the
moment generating function (MGF) approach. By utilizing [1,
eq. (4.2)] and [23, eq. (3.381.4)] and realizing that MγΣ(s) =

Eγl
[exp(

∑L
l=1 γl)] = ΠL

l=1Mγl
(s), where Mγl

(s) is the MGF
of the lth branch, one obtains the following single-fold integral

PPEP,ΣL
(d) =

C∑

k=0

e−AAk

k!π

∫ π
2

0

[

K∑

j=1

αiΓ(βj)

( γd2

2σ2
k
sin2 φ

+ ζj)βj

]L

︸ ︷︷ ︸

MγΣ
( γd2

2σ2
k

sin2 φ
)

dφ.

(20)
However, in order to evaluate a rather more tractable PEP
expression, one needs to derive the PDF of γΣ first. To this
end, for the case of L = 2, the PDF of γΣ2 can be obtained
by

fγΣ2
(γ) =

∫ γ

0

fγ1(x)f(γ − x)dx

=

G∑

i,j=1

G∑

j=1

αi

γβi

αj

γβj

∫ γ

0

xβi−1(γ − x)βj−1

e
ζi
γ
xe

ζj
γ
(γ−x)

dx. (21)

In order to solve (21), we split the solution into two scenarios,
namely when ζi = ζj and ζi 6= ζj . In the former scenario, eq.
(21) reduces to the following integral

fγΣ2
|(ζi=ζj) =

G∑

i=1

G∑

j=1

αi

γβi

αj

γβj
e−

ζj
ρ
γ

∫ γ

0

xβi−1(γ−x)βj−1dx.

(22)
By the change of variables u = x

γ , and with the aid of [23,
eq. (8.380)] and the functional relation in [23, eq. (8.384)],
we obtain the following closed-form solution

fγΣ2
|(ζi=ζj) =

G∑

i=1

G∑

j=1

αiαj

γβi+βj

Γ(βi)Γ(βj)

Γ(βi + βj)
e−

ζj
ρ
γγβi+βj−1.

(23)
Likewise, for the case ζi 6= ζj , eq. (22) is solved with the
aid of the binomial theorem in [23, eq. (1.111)] and under the
assumption that βj ∈ N. To this effect, the representation in
(21) can be equivalently re-written as follows

fγΣ2
|(ζi 6=ζj) =

G∑

i=1

G∑

j=1

βj−1
∑

l=0

(
βj − 1

l

)

(−1)l
αi

γβi

αj

γβj
γβj−l−1

× e−
ζj
γ
γ

∫ γ

0

xβi+l−1e−
x
γ
(ζi−ζj)dx. (24)

Evidently, the above integral can be expressed in closed-form
with the aid of [23, eq. (8.350.1)] yielding
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fγΣ2
|(ζi 6=ζj) =

G∑

i=1

G∑

j=1

βj−1
∑

l=0

(
βj − 1

l

)
(−1)lαiαj

γβj−l(ζi − ζj)βi+l

× γβj−l−1e−
ζj
γ
γ γ̃

(

βi + l,
γ(ζi − ζj)

γ

)

, (25)

where γ̃(a, x) ,
∫ x

0
ta−1e−tdt denotes the lower incomplete

gamma function. Thus, by expressing the γ̃(a, x) function
according to [23, eq. (8.352.6)] one obtains the following
closed-form expression,

fγΣ2
|(ζi 6=ζj) =

C∑

i=1

C∑

j=1

βj−1
∑

l=0

(
βj − 1

l

)
(−1)lαiαj

γβj−l

× (ζi − ζj)
−βi−lγβj−l−1e−

ζj
γ
γΓ(βi + l)

× (1 − e−
γ(ζi−ζj)

γ

βi+l−1
∑

t=0

(
γ(ζi−ζj)

γ

)t

t!
),(26)

which is valid for βi ∈ N, while

fγΣ2
= fγΣ2

|(ζi=ζj) + fγΣ2
|(ζi 6=ζj). (27)

By following the same methodology, a similar expression can
be obtained for fγΣ3

as was performed in our parallel work
[31]. It is noted here that the above methodology allows for the
derivation of similar expressions for fγΣ4

, fγΣ5
and so forth.

Based on the above, the PEP for MRC is readily obtained
by

PPEP,ΣL
(d) =

C∑

k=0

e−AAk

k!

∫ ∞

0

f (L)
γΣ

(γ)Q(

√

γd2

2σ2
k

) dγ.

(28)
For the case of L = 2 and by inserting (23) and (26) in (28),
it follows that

PPEP,Σ2(d)|(ζi=ζj) =

G∑

i,j=1

C∑

k=0

αiαj

γβi+βj

Γ(βi)Γ(βj)

Γ(βi + βj)

e−AAk

k!

×
∫ ∞

0

γβi+βj−1Q(
√

γd2

σ2
k

)

e−
ζj
γ
γ

dγ, (29)

and

PPEP,Σ2(d)|(ζi 6=ζj) =

G∑

i,j=1

C∑

k=0

βj−1
∑

l=0

(
βj − 1

l

)

× (−1)lαiαjΓ(βi + l)

γβj−l(ζi − ζj)βi+l
I1(γ)

−
G∑

i,j=1

C∑

k=0

βj−1
∑

l=0

βi+l−1
∑

t=0

(
βj − 1

l

)

I2(γ)

× (−1)lαiαjΓ(βi + l)(ζi − ζj)
t

γt+βj−l(ζi − ζj)βi+lt!
, (30)

where

I1(γ) =

∫ ∞

0

γβj−l−1e−
ζj
γ
γQ(

√

γd2

σ2
k

)dγ, (31)

and

I2(γ) =

∫ ∞

0

γt+βj−l−1e−
ζi
γ
γQ(

√

γd2

σ2
k

)dγ. (32)

Notably, the three integrals in (29) and (30) have the same
algebraic representation as (15). Therefore, following a similar
methodology presented in (16) and (17), and after some
algebraic manipulations, yields (33) and (34) at the top of the
next page. By following the methodology presented herein,
the derivation of PEP expressions for higher diversity orders
is readily available.

2) Pairwise Error Probability for Selection Combining:

The equivalent SNR for the SC scheme is given by

γSC = max
l={1,...,L}

γl. (35)

Accordingly, we obtain FγSC
(x) = ΠL

l=1Fγl
(x), where

Fγ1(x) =

G∑

i=1

αiζ
−βi

i γ̃(βi,
ζix

γ
) (36)

is the cumulative distribution function (CDF) of γl. For the
case of two independent and identically distributed (i.i.d.)
branches, differentiating FγSC

(x) with respect to x yields

fγSC2
(x) =

G∑

i=1

G∑

j=1

2αiαj

γζ
βj

j

(
x

γ
)βi−1 exp(

−ζix

γ
)γ̃(βj ,

ζjx

γ
).

(37)
Similar to (20), generally a corresponding PEP expression
for the SC scheme can be similarly expressed via the MGF
approach, where Mγsc

(s) is derived using [23, eq. (6.45.2)],
yielding

PPEP,SC2(d) =

C∑

k=0

2Ake−A

π(k!)

∫ π
2

0

MγSC
(s/sin2 θ)

︷ ︸︸ ︷

G∑

i,j=1

αiαjΓ(βji)

βi(ζji − s/sin2 θ)βji

× 2F1(1, βji;βi + 1;
ζi

(ζji − s/sin2 θ)
)dθ

︸ ︷︷ ︸

, (38)

where s = γd2

2σ2
k

, βji = βj + βi, and ζji = ζj + ζi.

A rather more tractable expression valid for βj ∈ N can
be obtained as follows. By expressing γ̃(βj ,

ζjx
γ ) according to

[23, eq. (8.352.6)], eq. (37) can be re-written as

fγSC2
(x) =

G∑

i=1

G∑

j=1

2αiαj

γζ
βj

j

(
x

γ
)βi−1 exp(

−ζix

γ
)

× Γ(βj)
(

1− e−
ζjx

γ

βj−1
∑

t=0

(
ζjx
γ )t

t!

)

. (39)

Based on the above PDF, the PEP for SC can be obtained
by (28) with replacing γΣ with γSC . Similarly, eq. (39) has
the same algebraic representation as in (15). Therefore, by
following the method presented in (17) and (18) and after
some algebraic manipulations, we obtain (40) at the top of the
next page.

3) Symbol Error Probability and Bit Error Probability:

Having the PEP expressions derived, at large γ, the SEP of
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PPEP,Σ2(d)|(ζi=ζj) =

G∑

i=1

G∑

j=1

C∑

k=0

αiαjΓ(βi)Γ(βj)

Γ(βi + βj)

Γ(2βj + 2βi)

Γ(1 + βj + βi)

e−AAk

k!

× (
σ2
k

2γd2
)βi+βj

2F1(βi + βj,
1

2
+ βi + βj , 1 + βi + βj ;−

2ζjσ
2
k

d2γ
), (33)

PPEP,Σ2(d)|(ζi 6=ζj) =
G∑

i=1

G∑

j=1

C∑

k=0

βj−1
∑

l=0

(
βj − 1

l

)
(−1)lαiαjΓ(βi + l)

(ζi − ζj)βi+l

Γ(2(βj − l))

Γ(1 + βj − l)

× (
σ2
k

2γd2
)βj−l

2F1(βj − l,
1

2
+ βj − l, 1 + βj − l;−2ζjσ

2
k

d2γ
)−

G∑

i=1

G∑

j=1

×
C∑

k=0

βj−1
∑

l=0

βi+l−1
∑

t=0

(
βj − 1

l

)
(−1)lαiαjΓ(βi + l)

(ζi − ζj)βi+l−tt!

Γ(2(t+ βj − l))

Γ(1 + t+ βj − l)

× (
σ2
k

2γd2
)t+βj−l

2F1(t+ βj − l,
1

2
+ t+ βj − l, 1 + t+ βj − l;−2ζiσ

2
k

d2γ
). (34)

PPEP,SC2(d) =

G∑

i=1

G∑

j=1

C∑

k=0

2e−AAk

k!

αiαjΓ(βj)

ζ
βj

j

Γ(2βi)

Γ(1 + βi)
(
σ2
k

2γd2
)βi

× 2F1(βi,
1

2
+ βi, 1 + βi;

−2ζiσ
2
k

d2γ
)−

G∑

i=1

G∑

j=1

C∑

k=0

βj−1
∑

t=0

2e−AAk

k!

αiαjΓ(βj)

ζ
βj−t
j t!

× Γ(2(t+ βi))

Γ(1 + t+ βi)
(
σ2
k

2γd2
)t+βi

2F1(t+ βi,
1

2
+ t+ βi, 1 + t+ βi;

−2(ζi + ζj)σ
2
k

d2γ
). (40)

various M-ary linear signaling schemes can be expressed as
[16]

Ps = 2ηMP (dM ), (41)

where dM is the minimum average Euclidean distance of S,
and ηM is a parameter dependent on the signaling scheme, as
summarized in [16, Table. 1]. Assuming gray coding, the BEP
can be determined by Pb = Ps/log2 M,where M is the size of
the constellation S. For the case of binary phase shift keying
(BPSK), the exact SEP is obtained when ηM = 1

2 , and dM =√
2. The BPSK signaling is considered in our simulations and

analyses thereafter.

C. Average Channel Capacity

Assuming that the channel state information is known, the
conditional channel capacity of a two-term mixture distribu-
tion, which can be written as

fN(x) = p0fB(x) + (1− p0)fI(x), (42)

where 0 < p0 ≤ 1 is the mixture weight, and fB(x), fI(x)
are the individual densities, was derived as [32]

C = p0C(0) + p1C(1), (43)

where C(0) and C(1) are the capacities of fB(x) and fI(x),
respectively. Extending on this approach, we can express
the average unconditional capacity under the MCA noise as

a weighted summation of the individual capacities of each
Gaussian component as

C =

C∑

k=0

e−AAkB

k!ln2
Eγ{ln(1 +

γ

σ2
k

γ)}. (44)

Denote the effective average SNR per kth noise component as
γk = γ

σ2
k

, then following [10], the average channel capacity
for the single-branch scenario, which is valid for βi ∈ N, can
be expressed in closed-form as

C =
C∑

k=0

G∑

i=1

βi∑

k=1

αi
e−AAk

k! γβi

k

B

ln 2
Γ(βi)e

ζi
γk

Γ(k − βi,
ζi
γk

)

( ζi
γk

)k
.

(45)
For the MRC scheme, since fγMRC

(x) has the same algebraic
representation as the MG distribution, the average channel
capacity for L = 2 is readily obtained in (46) and (47) at
the top of the next page, while

CΣ2 = CΣ2 |(ζi=ζj) + CΣ2 |(ζi 6=ζj). (48)

Similar expressions for the average channel capacity for
higher diversity orders can be obtained by following the same
methodology. Likewise, for the SC scheme, an expression for
the average channel capacity for L = 2 can be derived from
(39) as in (49) at the top of the next page, which is valid for
βi, βj ∈ N. In order to get expressions valid for all values
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CΣ2 |(ζi=ζj) =

C∑

k=0

G∑

i=1

G∑

j=1

βi+βj∑

k=1

e−AAkαiαj

k! γ
βi+βj

k

B

ln 2
Γ(βi)Γ(βj) e

ζj
γk

Γ(k − βi + βj ,
ζj
γk

)

(
ζj
γk

)k
, (46)

CΣ2 |(ζi 6=ζj) =

C∑

k=0

G∑

i=1

G∑

j=1

βj−1
∑

l=0

βj−l
∑

k=1

B

ln 2

(
βj − 1

l

)
(−1)lαiαjΓ(βi + l)

γ
βj−l
k (ζi − ζj)βi+l

Γ[βj − l] e
ζj
γk

Γ(k − βj − l,
ζj
γk

)

(
ζj
γk

)k

−
C∑

k=0

G∑

i=1

G∑

j=1

βj−1
∑

l=0

βi+l−1
∑

t=0

βj+t−l
∑

k=1

e−AAk

k!

B

ln 2

(
βj − 1

l

)

× (−1)lαiαjΓ(βi + l)

γ
βj+t−l
k (ζi − ζj)βi−t+lt!

Γ[βj + t− l] e
ζi
γ k

Γ(k − βj + t− l, ζi
γk

)

( ζi
γk

)k
, (47)

CSC2 =

C∑

k=0

G∑

i=1

G∑

j=1

βi∑

k=1

e−AAk

k!

B

ln 2

2αiαjΓ(βj)

γβi

k ζ
βj

j

(βi − 1)! e
ζi
γk

Γ(k − βi,
ζi
γk

)

( ζi
γk

)k

−
C∑

k=0

G∑

i=1

G∑

j=1

βj−1
∑

t=0

e−AAk

k!

B

ln 2

2αiαjΓ(βj)

γβi+t
k ζ

βj−t
j t!

(t+ βi − 1)! e
ζi+ζj

γk

t+βi∑

k=1

Γ(k − t+ βi,
ζi+ζj
γk

)

(
ζi+ζj
γk

)k
, (49)

of the involved parameter β, we obtain tight approximate
expressions for the average channel capacity as follows. By
utilizing the Taylor’s series, ln(1 + γkγ)} can be expanded
about γk, yielding

ln(1 + γkγ) = ln(1 + E[
γ

σ2
i

]) +

∞∑

w=1

(−1)w−1

w

(x− E[ γ
σ2
k

])w

(1 + E[ γ
σ2
k

])w
.

(50)
By taking the expectation of this expansion and truncating the
result to contain the first two moments, i.e. w = 2, we obtain
an approximate expression

C≈
C∑

k=0

e−AAkB

k!πln2
[ln(1+E[

γ

σ2
k

])−
E[( γ

σ2
k

)2]− E
2[ γ

σ2
k

]

2(1 + E[ γ
σ2
k

])2
]. (51)

Similarly, for the case of ǫ-mixture noise, the capacity can be
expressed as

C ≈ B

ln2

(

(1 − ǫ)[ln(1 + E[
γ

σ2
g

])−
E[( γ

σ2
g
)2]− E

2[ γ
σ2
g
]

2(1 + E[ γ
σ2
g
])2

]

+ ǫ[ln(1 + E[
γ

σ2
i

])−
E[( γ

σ2
i

)2]− E
2[ γ

σ2
i

]

2(1 + E[ γ
σ2
i

])2
]
)

. (52)

Here we derive the first two moments E[ γ
σ2
k

] and E[( γ
σ2
k

)2] by
differentiating the corresponding MGF as follows,

E[(
γ

σ2
k

)n] =
d(n)Mγ(

s
σ2
k

)

ds(n)
|s=0 . (53)

Differentiating MγMRC
(s) in (20) using (53), and after some

mathematical simplifications, we obtain

E[
γMRC

σ2
k

] = −L(
γMRC

σ2
k

)ΛL−1Ω, (54)

E[(
γMRC

σ2
k

)2] = L(
γMRC

σ2
k

)2
[

(L − 1)ΛL−2Ω2 + ΛL−1Θ
]

,

(55)

where Λ =
∑K

i=1
αiΓ(βi)

ζ
βi
i

,Ω =
∑K

j=1
βjαjΓ(βj)

ζ
βj+1

j

, and Θ =

∑K
j=1

βjαjΓ(βj)(βj+1)

ζ
βj+2

j

.

Similarly, differentiating MγSC
(s) in (38) using (53), and

after considerable mathematical manipulation, we arrive at

E[
γSC

σ2
k

] =
G∑

i,j=1

Ψ1(i, j)

[

Φ1(i, j) +
ζjΦ2(i, j)

ζij(βj + 1)

]

, (56)

E[(
γSC

σ2
k

)2] =

G∑

i,j=1

(βij + 1)Ψ2(i, j)

ζij

[

Φ1(i, j) (57)

+
2ζjΦ2(i, j)

ζij(βj + 1)
+

2ζ2jΦ3(i, j)

(βj + 1)ζ2ij(βj + 2)

]

,

where Ψy(i, j) = (γSC

σ2
k

)y
2βijαiαjΓ(βij)

βiζ
βij+1

ij

, Φy(i, j) =

2F1

(

y, βij + y − 1;βj + y;
ζj
ζij

)

.

V. SIMULATIONS AND DISCUSSION

In order to evaluate the effectiveness of the BIC described in
Section III and to validate the derivations of Section IV-A, Fig.
2 depicts the analytical and simulated SEP for BPSK signaling
under MCA noise with Ξ = 0.01, A = 0.1 for both MRC and
SC schemes with L = 4, and2, respectively, for various MG-
based fading channels, namely NL, KG, κ − µ, and η − µ.
The number of components is chosen according to the BIC,
as indicated in Section III. As shown, the analytical SEP
curves are very accurate over the whole operating average SNR



0018-9545 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2016.2569064, IEEE
Transactions on Vehicular Technology

JOURNAL OF XXX 8

region for both MRC and SC. This finding directly reflects the
accuracy and effectiveness of the proposed BIC approach to
select the number of the components. In the simulations, the
term Monte Carlo indicates that we utilized the actual fading
channel variates, with a number of repetitions of 106 trials or
bits.

In Fig. 3, we analyze the SEP for the MRC scheme, when
L = 1 and L = 4, with the fading channel following the
NL fading model. We consider several scenarios of the MCA
noise with Ξ = 0.1, and A = (0.1, 0.3, 0.9). Recall that as
A → 0, the noise becomes more impulsive. Therefore, as one
would expect, at medium and large γ, the SEP curve becomes
more flat as A tends to zero. However, interestingly we notice
that this is not the case at very small γ, where there exists a
threshold, marked by arrows, for which the error performance
associated with small A (more impulsive scenario) is better.
Increasing the diversity order shifts this threshold to the left;
when L = 1, the threshold was at γ = 5 dB, whereas with
L = 4, the threshold shifts to γ = 0 dB.

Finally, in Fig. 4, we plot the average channel capacity
versus ǫ for the NL and η−µ fading scenarios assuming MRC
diversity scheme and ǫ-mixture noise with an impulsive index
of ξ = σ2

i/σ2
g = 75. First, we notice that as the diversity order

increases, the whole capacity curve shifts upwards. Further-
more, when ǫ is either small or large, one Gaussian component
dominates, resulting in low average channel capacity merit.
Here the skewness of the curve reflects the fact that at large
ǫ, the noise becomes more impulsive.
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Figure 2. Analytical and simulated SEP of BPSK with 4-MRC and 2-SC
schemes for various MG based fading channels with MCA Noise of Ξ =
0.01, A = 0.1, and C = 10.

VI. CONCLUSIONS

In this paper, we have proposed a unified and versatile ap-
proach to the performance analysis of SIMO over generalized
and composite fading channels with impulsive noise. Specif-
ically, we have proposed an effective-information theoretic
approach to determine the optimal number of components for
various MG-based generalized and composite fading models,
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Figure 3. Analytical and simulated SEP of BPSK with MRC scheme for NL
fading contaminated with MCA Noise of λ = 0.1, A = (0.1, 0.3, 0.9), and
C = 10.
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Figure 4. Average capacity with and without MRC diversity for NL and
η − µ fading channels contaminated with ǫ-mixture noise with γ = 10 dB
and ξ = 75.

based on the BIC. We also have derived novel exact analytical
PEP and average channel capacity expressions for the perfor-
mance of SIMO systems with MRC and SC schemes over the
MG-based fading channels with impulsive noise, modeled by
Middleton’s Class-A (MCA) and ǫ-mixture noise models. Our
derived expressions have been shown to be both algebraically
versatile and generalized to many fading channels and noise
environments.
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